Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:22:46.770Z Has data issue: false hasContentIssue false

Molecular-level Manipulation Technology for Low-k Dielectrics Controlling the Physical and Chemical Structures toward 32nm-node BEOLs

Published online by Cambridge University Press:  01 February 2011

Yoshihiro Hayashi*
Affiliation:
y-hayashi@az.jp.nec.com, NEC Electronics, LSI Reserach Laboratory, 1120, Shimokuzawa,, Sagamihara, KANAGAWA, 229-1198, Japan, +81 42 771 4267, +81 42 771 0886
Get access

Abstract

Low-k materials in advanced interconnect modules are required not only to lower the parasitic capacitances, but also to have mechanical stability with damage-less interfaces. By plasma-polymerization (PP) process using ring-type siloxane precursor, a new self-organized porous SiOCH film is developed with preserving the original hexagonal silica-backbone structure, thus so called as a molecular-pore-stack (MPS) SiOCH film. The hydrocarbon-rich MPS film has high endurance to the process damages. A density-modulated MPS film is obtained with reinforced interfaces by plasma co-polymerization (PcP) process using not only the ring-type but also linear-type siloxane. Furthermore, an ultimate full low-k module with low-k silica-amorphous-carbon composite (SACC) cap, instead of high-k SiCN, is also obtained simply by the one-step deposition scheme. The modulated PcP process and the sophisticated molecular design of the precursor siloxane provides scaled-down interconnect modules with good mechanical strength and excellent dielectric reliability at a low manufacturing cost, applicable for 45/32/22nm-nodes ULSIs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hayashi, Y., IEEE Intl. Interconnect Tech. Conf., (San Francisco, USA), 2002, p145 (2002).Google Scholar
2. Hijioka, K., Tagami, M., Itoh, F., Ohtake, H., Takeuchi, T., Sato, S., and Hayashi, Y., Jap. J. Appl. Phys., 43, 4B, p1807 (2004).Google Scholar
3. Itoh, F., Hijioka, K., Takeuchi, T., and Hayashi, Y., Proc. of Advanced Metallization Conf. (San Diego, UAS), p381 (2004).Google Scholar
4. Kawahara, J., Nakano, A., Saito, S., Kinoshita, K., Onodera, T., and Hayashi, Y., 1999 Symp. VLSI Technol. (Kyoto, JPN) Dig. p.45 (1999).Google Scholar
5. Kawahara, J., Nakano, A., Kinoshita, K., Harada, Y., Tagami, M., Tada, M. and Hayashi, Y., Plasma Source Sci., Technol. 12, pS80 (2003).Google Scholar
6. Ohtake, H., Saito, S., Tada, M., Onodera, T. and Hayashi, Y., IEEE Trans. Semiconduct. Manufact., 18, 4, p672 (2005).Google Scholar
7. Hayashi, Y., Harada, Y., Itoh, F., Takeuchi, T., Tada, M., Tagami, M., Ohtake, H., Hijioka, K., Saito, S., Onodera, T., Hara, D. and Tokudome, K., IEEE Intl. Interconnect Tech. Conf. (San Francisco, USA), p.225 (2004).Google Scholar
8. Kawahara, J., Nakano, A., Kunimi, N., Kinoshita, K., Hayashi, Y., Ishikawa, A., Seino, Y., Ogata, T., Sonoda, Y., Yoshino, T., Goto, T., Takada, S., Miyoshi, H., Matsuo, H., and Kikkawa, T., Jpn. J. Appl. Phys., 46, 7A, p4064 (2007).Google Scholar
9. Ueki, M., Narihiro, M., Ohtake, H., Tagami, M.; Tada, M.; Ito, F.; Harada, Y.; Abe, M.; Inoue, N.; Arai, K.; Takeuchi, T.; Saito, S.; Onodera, T.; Furutake, N.; Hiroi, M.; Sekine, M.; Hayashi, Y., 2004 Symp. VLSI Techol. (Honolulu, USA) p60 (2004).Google Scholar
10. Tada, M., Tamura, T., Ito, F., Ohtake, H., Narihiro, M., Tagami, M., Ueki, M., Hijioka, K., Abe, M., Inoue, N., Takeuchi, T., Saito, S., Onodera, T., Furutake, N., Arai, K., Sekine, M., Suzuki, M., Hayashi, Y., IEEE Trans. Electron Devices, 53, 5, p1169, (2006).Google Scholar
11. Tada, M., Ohtake, H., Itoh, F., Narihiro, M., Taiji, T., Kasama, Y., Takeuchi, T., Arai, K., Furutake, N., Oda, N., Sekine, M., Hayashi, Y., IEEE Trans. Electron Devices, 54, 4, p797 (2007).Google Scholar
12. Tagami, M.; Ohtake, H.; Tada, M.; Ueki, M.; Ito, F.; Taiji, T.; Kasama, Y.; Iwamoto, T.; Wakabayashi, H.; Fukai, T.; Arai, K.; Saito, S.; Yamamoto, H.; Abe, M.; Narihiro, M.; Furutake, N.; Onodera, T.; Takeuchi, T.; Tsuchiya, Y., Y.; Oda, N.; Sekine, M.; Hane, M.; Hayashi, Y., 2006 Symp. VLSI Techol. (Honolulu, USA) p134 (2006).Google Scholar
13. Inoue, N., Tagami, M.; Itoh, F.; Yamamoto, H.; Takeuchi, T.; Saito, S.; Furutake, N.; Ueki, M.; Tada, M.; Suzuki, T., and Hayashi, Y., IEEE Intl. Interconnect Tech. Conf. (San Francisco, USA), p181 (2007).Google Scholar
14. Tada, M., M.; Yamamoto, H.; Ito, F.; Narihiro, M.; Ueki, M.; Inoue, N.; Abe, M.; Saito, S.; Takeuchi, T.; Furutake, N., Onodera, T.; Kawahara, J.; Arai, K.; Kasama, Y.; Taiji, T.; Tohara, M.; Sekine, M.; Hayashi, Y., IEEE, Intl. Electron Devices Meeting (IEDM), p351 (2006).Google Scholar
15. Ueki, M., Yamamoto, H., Ito, F., Kawahara, J., Tada, M., Takeuchi, T., Saito, S., Furutake, N., Onodera, T. and Hayashi, Y., IEEE, Intl. Electron Devices Meeting (IEDM), p973 (2007).Google Scholar
16. Ito, F., Takeuchi, T., Yamamoto, H., Ohdaira, T., Suzuki, R. and Hayashi, Yoshihiro, to be published in Advanced Metallization Conf.(AMC 2007, MRS).Google Scholar
17. Tada, M., Yamamoto, H., Ito, F., Takeuchi, T., Furutake, N., and Hayashi, Y., J. Electrochem. Soc., 154, 7, p354 (2007).Google Scholar
18. Sankaran, S., et al., IEEE, Intl. Electron Devices Meeting (IEDM), p355 (2006).Google Scholar
19. Inoue, N., Furutake, N., Ito, F., Yamamoto, H., Takeuchi, T. and Hayashi, Y., Ext. Abst. 2006 Intl. Conf. Solid State Device and Materials (SSDM), p1026 (2007).Google Scholar
20. Hayashi, Y., Ohtake, H., Kawahara, J., Tada, M., Saito, S., Inoue, N., Ito, F., Tagami, M., Ueki, M., Furutake, N., Takeuchi, T., Yamamoto, H. and Abe, M., to be published in IEEE Trans., IEEE Trans. Semiconduct. Manufact (2008).Google Scholar