No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
The conformational dynamics of a model compound for poly(di-n-hexylsilane) (PDHS) has been explored using the new molecular dynamics program MM3-MD. MM3-MD trajectories at variable temperatures reveal two abrupt conformational transitions, one near -182°C and another near -175°C, associated with two energy barriers on the potential-energy surface. The first transition near -182°C allows shifts in the backbone torsion angle from that defined by the global energy minimum designated off-trans to that corresponding to a statistical collection of torsion angles within the range trans ±30°. The second transition near -175°C allows the backbone torsion angle to explore the remainder of its torsional space. The sidechain dynamics follows a similar pattern. We suggest that the abrupt transition calculated here at -182°C for “gas.phase” PDHS corresponds to that observed for PDHS at -28°C in solution and at 42°C in the solid state.