No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
The ability to make highly doped δ-layers in semiconductors depends on the rate of interchange of atoms between layers at the crystal surface. We have simulated molecular beam epitaxy on a silicon (100) surface covered with a monolayer of impurity atoms. The kinetics of impurity segregation to the surface was examined for various growth conditions and segregation energies. We find that segregation is facilitated by appreciable inter-layer diffusion of atoms in the top several layers. The amount of diffusion is much greater during deposition than it is when the beam is off.