Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:46:00.687Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Glassforming Network Fluids

Published online by Cambridge University Press:  01 February 2011

Kurt Binder
Affiliation:
kurt.binder@uni-mainz.de, Johannes Gutenberg Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, Mainz, 55099, Germany, + 49 06131 39-23680, + 49 06131 39-25441
Juergen Horbach
Affiliation:
Juergen.Horbach@dlr.de, Johannes-Gutenberg Universitaet, Institut fuer Physik, Staudinger Weg 7, Mainz, 55099, Germany
Michael Hawlitzky
Affiliation:
hawlitzky@uni-mainz.de, Johannes-Gutenberg Universitaet, Institut fuer Physik, Staudinger Weg 7, Mainz, 55099, Germany
Get access

Abstract

Molecular Dynamics simulations of molten oxides, such as fluid silicon dioxide and germanium dioxide, based on simple classical pair potentials, are compared with corresponding Car-Parrinello “ab initio” Molecular Dynamics (CPMD) work and with experiment. It is shown that CPMD provides a significantly better account for properties on short length scales, but classical MD is still indispensable to deal with larger scales of length and time. The behavior of the mean square displacement of the particles as well as the incoherent intermediate scattering function is compatible with a mode coupling description, at least at very high temperatures, while the diffusion constants show a crossover to Arrhenius behavior near the mode coupling critical temperature of these systems. Finally, the results for the network forming liquids are compared to those from simulations of binary metallic alloys such as Al80Ni20, which form a structure similar to densely packed hard spheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zallen, R., The Physics of Amorphous Solids (Wiley, New York, 1983)Google Scholar
2. Structure and Dynamics of Glasses and Glassformers, edited by Angell, C. A., Ngai, K. L., Kieffer, J., Egami, T., and Nienhaus, G. U. (MRS, Pittsburgh, 1997)Google Scholar
3. Binder, K. and Kob, W., Glassy Materials and Disorderd Solids (World Scientific, Singapore, 2005)Google Scholar
4. Angell, C. A., in Relaxations in Complex Systems, Ngai, K. L. and Wright, G. B., eds.(US Dept. Commerce, Springfield, 1985) p. 1 Google Scholar
5. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)Google Scholar
6. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985)Google Scholar
7. Marx, D. and Hutter, J., in Modern Methods and Algorithms of Quantum Chemistry(NIC, Jülich/Germany, 2000) p. 301.Google Scholar
8.http://www.cpmd.org/.Google Scholar
9. Beest, B. W. H., Kramer, G. J., and Santen, R. A. van, Phys. Rev. Lett. 64, 1955 (1990)Google Scholar
10. Oeffner, R. D. and Elliott, S. R., Phys. Rev. B58, 14791 (1998)Google Scholar
11. Price, D. L. and Carpenter, J. M., J. Non-Cryst. Solids 92, 153 (1987)Google Scholar
12. Sampath, S., Benmore, C. J., Lantzky, K. M., Neuefeind, J., Leinenweber, K., Price, D. L. and Yarger, J.L., Phys. Rev. Lett. 90, 115502 (2003)Google Scholar
13. Horbach, J. and Kob, W., Phys. Rev. B60, 3169 (1999)Google Scholar
14. Vollmayr, K., Kob, W., and Binder, K., Phys. Rev. B54, 15808 (1996)Google Scholar
15. Hawlitzky, M., Horbach, J., Ispas, S., Krack, M., and Binder, K., in preparationGoogle Scholar
16. Riebling, E. F., J. Chem. Phys. 39, 3022 (1963)Google Scholar
17. Dingwell, D. B., Knoche, R. and Webb, S. L., Phys. Chem. Minerals 19, 445 (1993)Google Scholar
18. Benoit, M., Ispas, S., Jund, P., and Jullien, R., Eur. Phys. J. B13, 631 (2000)Google Scholar
19. Mischler, C., Kob, W., and Binder, K., Computer Phys. Commun. 147, 222 (2002)Google Scholar
20. Mischler, C., Dissertation (Johannes Gutenberg Universität, Mainz, 2002)Google Scholar
21. Mischler, C., Horbach, J., Kob, W., and Binder, K., J. Phys.: Condens. Matter 17, 4005 (2005)Google Scholar
22. Götze, W. and Sjögren, L., Rep. Progr. Phys. 55, 241 (1992)Google Scholar
23. Hoang, V. V., J. Phys.: Condens. Matter 18, 177 (2006)Google Scholar
24. Micoulaut, M., Guissani, Y., and Guillot, B., Phys. Rev. E73, 031504 (2006)Google Scholar
25. Das, S. K., Horbach, J., Koza, M. M., Chatoth, S. M., and Meyer, A., Appl. Phys. Lett. 86, 011918 (2005)Google Scholar
26. Das, S. K., Horbach, J., Griesche, A., Macht, M.-P., Frohberg, G., and Meyer, A., Phys.Rev. B75, 174304 (2007)Google Scholar
27. Mishin, Y., Mehl, M. J., and Papaconstantopoulos, D. A., Phys. Rev. B65, 224114 (2002)Google Scholar
28. Bhatia, A. B. and Thornton, D. E., Phys. Rev. B52, 3004 (1970)Google Scholar