Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:42:31.543Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Interfacial Thermal Resistance Between a (10,10) Carbon Nanotube and SiO2

Published online by Cambridge University Press:  31 January 2011

Zhun-Yong Ong
Affiliation:
zhunyong@gmail.com, University of Illinois, Micro and Nanotechnology Laboratory, 208 N Wright St, Urbana, Illinois, 61801, United States
Eric Pop
Affiliation:
epop@illinois.edu, University of Illinois, Electrical and Computer Engineering, Urbana, Illinois, United States
Get access

Abstract

Understanding thermal transport between carbon nanotubes (CNTs) and dielectric substrates is important both for nanoscale thermal management and CNT device applications. We investi-gate thermal transport between a (10,10) CNT and an SiO2 substrate through non-equilibrium classical molecular dynamics (MD) simulations. The thermal boundary conductance (TBC) is computed by setting up a temperature pulse in the CNT and monitoring its relaxation. The TBC is found to scale nearly linearly with temperature between 200�600 K, where a quantum correction is applied to the CNT heat capacity through its phonon density of states. However, the TBC ap-pears most sensitive to the strength the CNT-substrate interaction, which linearly modulates it between 0.05�0.30 WK-1m-1, in the range suggested by recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pop, E. et al. , Phys. Rev. Lett. 95, 155505 (2005).Google Scholar
[2] Berber, S. Kwon, Y.-K., and Tománek, D., Phys. Rev. Lett. 84, 4613 (2000).Google Scholar
[3] Prasher, R. Nano Lett. 5, 2155 (2005).Google Scholar
[4] Pop, E. et al. , J. Appl. Phys. 101, 093710 (2007).Google Scholar
[5] Carlborg, C. F. Shiomi, J. and Maruyama, S. Phys. Rev. B 78, 205406 (2008).Google Scholar
[6] Clancy, T. C. and Gates, T. S. Polymer 47, 5990 (2006).Google Scholar
[7] Shenogin, S. et al. , J. Appl. Phys. 95, 8136 (2004).Google Scholar
[8] Plimpton, S. J. Comput. Phys. 117, 1 (1995).Google Scholar
[9] Stuart, S. J. Tutein, A. B. and Harrison, J. A. J. Chem. Phys. 112, 6472 (2000).Google Scholar
[10] Brenner, D. W. Phys. Rev. B 42, 9458 (1990).Google Scholar
[11] Munetoh, S. et al. , Comp. Mat. Sci. 39, 334 (2007).Google Scholar
[12] Carpenter, J. M. and Price, D. L. Phys. Rev. Lett. 54, 441 (1985).Google Scholar
[13] Lee, B. M. et al. , Comp. Mat. Sci. 37, 203 (2006).Google Scholar
[14] Hertel, T. Walkup, R. E. and Avouris, P. Phys. Rev. B 58, 13870 (1998).Google Scholar
[15] Rappe, A. K. et al. , J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
[16] Diao, J. Srivastava, D. and Menon, M. J. Chem. Phys. 128, 164708 (2008).Google Scholar
[17] Maune, H. Chiu, H.-Y., and Bockrath, M. Appl. Phys. Lett. 89, 013109 (2006).Google Scholar
[18] Swartz, E. T. and Pohl, R. O. Rev. Mod. Phys. 61, 605 (1989).Google Scholar