Published online by Cambridge University Press: 01 February 2011
Solid Phase Epitaxial Regrowth (SPER) is of great technological importance in semiconductor device fabrication. A better understanding and accurately modeling of its behavior are vital to the design of fabrication processes and the improvement of the device performance. In this paper, SPER was modeled by Molecular Dynamics (MD) with Tersoff potential. Extensive MD simulations were conducted to study the dependence of SPER rate on growth orientation and uniaxial stress. The results were compared with experimental data. It was concluded that MD with Tersoff potential can qualitively describe the SPER process. For a more quantitatively accurate model, a better interatomic potential are needed.