Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:12:14.307Z Has data issue: false hasContentIssue false

Molecular Dynamics Computer Simulations of Calcium-Alumino-Silicate Intergranular Films between the basal and prism planes of α-Al2O3

Published online by Cambridge University Press:  11 February 2011

Stephen H. Garofalini
Affiliation:
Interfacial Molecular Science Laboratory, Department of Ceramic and Materials Engineering, Rutgers University
Shenghong Zhang
Affiliation:
Interfacial Molecular Science Laboratory, Department of Ceramic and Materials Engineering, Rutgers University
Get access

Abstract

Molecular dynamics computer simulations using a robust multibody potential were used to study the structure of the intergranular films (IGFs) formed between two different crystallographic orientations of α-Al2O3 crystals. The simulations show a localized ordering of the IGF at the interface of both the basal and prism planes caused by preferential adsorption of specific ions from the IGF onto the crystal planes. However, the results of the adsorption have significantly different effects on crystal growth of the specific orientations. The preferential adsorption of Ca ions from the IGF onto the (0001) surface inhibit growth in the <0001> direction. However, Ca does not affect adsorption of O and Al from the IGF onto the (1120) surface and potential growth of this orientation in the <1120> direction. The results are consistent with experimental data regarding anisotropic grain growth in this system and provide an atomistic view of this behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kleebe, H.-J. Structure and Chemistry of Interfaces in Si3N4 Ceramics Studied by Transmission Electron Microscopy. J. Ceram. Soc. Japan 105, 453475 (1997).Google Scholar
2. Kleebe, H.-J., Cinibulk, M. K., Cannon, R. M. & Rühle, M. Statistical Analysis of the Intergranular Film Thickness in Silicon Nitride Ceramics. J. Am. Ceram. Soc. 76, 1969–1077 (1993).Google Scholar
3. Pezzotti, G. et al. Chemistry and inherent viscosity of glasses segregated at grain boundaries of silicon nitride and silicon carbide ceramics. Journal of Non-Crystalline Solids 271, 7987 (2000).Google Scholar
4. Gu, H., Cannon, R. M. & Ruhle, M. Composition and chemical width of ultra-thin amorphous films at grain boundaries in silicon nitride. J. Mater. Res. 13, 376387 (1998).Google Scholar
5. Gu, H. Variation of width and composition of grain-boundary film in a high purity silicon nitride with minimal silica. J. Am. Ceram. Soc. 85, 3337 (2002).Google Scholar
6. Ching, W.-Y., Mo, S.-D. & Chen, Y. Calculation of XANES/ELNES spectra of all edges in Si3N4 and Si2N2O. J. Am. Ceram. Soc. 85, 1115 (2002).Google Scholar
7. Painter, G. S., Becher, P. F. & Sun, E. Y. Bond energetics at intergranular interfaces in alumina-doped silicon nitride. J. Am. Ceram. Soc. 85, 6567 (2002).Google Scholar
8. Yoshiya, M., Tatsumi, K., Tanaka, I. & Adachi, H. Theoritical study on the chemistry of intergranular glassy film in Si3N4-SiO2 ceramics. J. Am. Ceram. Soc. 85 (2002).Google Scholar
9. Ramamurthy, S., Schmalzried, H. & Carter, C. B. Interaction of silicate liquid with a sapphire surface. Phil Mag A 80, 26512674 (2000).Google Scholar
10. Bae, S. I. & Baik, S. Determination of Critical Concentrations of Silica and/or Calcia for Abnormal Grain Growth in Alumina. J. Am. Ceram. Soc. 76, 10651067 (1993).Google Scholar
11. Bae, S. I. & Baik, S. Abnormal Grain Growth of Alumina. J. Am. Ceram. Soc. 80, 1149–56 (1997).Google Scholar
12. Bennison, S. J. & Harmer, M. P. Grain-Growth Kinetics for Alumina in the Absence of a Liquid Phase. J. Am. Ceram. Soc. 68, C22 - C-24 (1985).Google Scholar
13. Handwerker, C. A., Morris, P. A. & Coble, R. L. Effects of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3. J. Am. Ceram. Soc. 72, 130–36 (1989).Google Scholar
14. Kaysser, W. A., Sprissler, M., Handwerker, C. A. & Blendell, J. E. Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina. J. Am. Ceram. Soc. 70, 339–43 (1987).Google Scholar
15. Susnitzky, D. W. & Carter, C. B. Structure of Alumina Grain Boundaries Prepared with and without a Thin Amorphous Intergranular Film. J. Am. Ceram. Soc. 73, 2485–93 (1990).Google Scholar
16. Powell-Dogan, C. A. & Heuer, A. H. Microstructure of 96% Alumina Ceramics: III, Crystallization of High-Calcia Boundary Glasses. J. Am. Ceram. Soc. 73, 3684–91 (1990).Google Scholar
17. Chou, T. C. & Nieh, T. G. Interface-controlled phase transformation and abnormal grain growth of alpha-Al2O3 in thin alpha-alumina films. Thin solid films 221, 8997 (1992).Google Scholar
18. Blonski, S. & Garofalini, S. H. Molecular Dynamics Study of Silica-Alumina Interfaces. J. Phys. Chem. 100, 22012205 (1996).Google Scholar
19. Litton, D. A. & Garofalini, S. H. Atomistic Structure of Sodium and Calcium Silicate Intergranular Films in Alumina by Molecular Dynamics. J. Mat. Res. 14, 14181429 (1999).Google Scholar
20. Litton, D. A. & Garofalini, S. H. Molecular Dynamics Simulations of Calcium Alumino-Silicate Intergranular Films on (0001) Alumina Faces. J. Am. Ceram. Soc. 83, 22732281 (2000).Google Scholar
21. Blonski, S. & Garofalini, S. H. Molecular Dynamics Simulations of α-alumina and γ-alumina Surfaces. Surf. Sci. 295, 263274 (1993).Google Scholar
22. Mackrodt, W. C., Davey, R. J., Black, S. N. & Docherty, R. The Morphology of α-Al2O3 and α-Fe2O3: The Importance of Surface Relaxation. J. Crystal Growth 80, 441446 (1987).Google Scholar
23. Batirev, I. G., Alavi, A., Finnis, M. W. & Deutsch, T. First principles calculations of the ideal cleavage energy of bulk niobium(111)/alpha-alumina(0001)interfaces. Phys. Rev. Lett. 82, 15101513 (1999).Google Scholar
24. Batirev, I. G., Alavi, A. & Finnis, M. W. Ab initio calculations of the Al2O3 (0001) surface. Faraday Discuss. 114, 3343 (2000).Google Scholar
25. Ravishankar, N. & Carter, C. B. Migration of alumina grain boundaries containing a thin glass film. Acta Mater 49, 19631969 (2001).Google Scholar
26. Blonski, S. & Garofalini, S. H. Atomistic Structure of Calcium Silicate Intergranular Films in Alumina Studied by Molecular Dynamics Simulations. J. Am. Ceram. Soc. 80, 19972004 (1997).Google Scholar
27. Feuston, B. P. & Garofalini, S. H. Empirical Three-Body Potential for Vitreous Silica. J. Chem. Phys. 89, 58185824 (1988).Google Scholar
28. Garcia, M. & Garofalini, S. H. Molecular Dynamics Simulation of the Effect of Crystal Orientation on Lithium Ion Diffusion at the V2O5/Li2SiO3 Interface. J. Electrochem. Soc. 146, 840849 (1999).Google Scholar
29. Garofalini, S. H. & Martin, G. Molecular Simulations of the Polymerization of Silicic Acid Molecules and Network Formation. J. Phys. Chem. 98, 13111316 (1994).Google Scholar
30. Webb, E. B. & Garofalini, S. H. Relaxation of Silica Glass Surfaces Before and After Stress Modification in Wet and Dry Atmospheres: Molecular Dynamics Simulations. J. Non-Cryst. Sol. 226, 4757 (1998).Google Scholar
31. Zirl, D. M. & Garofalini, S. H. Structure of Sodium-Aluminosilicate Glasses. J. Am. Ceram. Soc. 73, 28482856 (1990).Google Scholar