Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:06:46.920Z Has data issue: false hasContentIssue false

Molecular Design of Synthetic Polypeptides for Nonlinear Optics

Published online by Cambridge University Press:  21 February 2011

T. Ishii
Affiliation:
Frontier Research Program (RIKEN) 2–1, Hirosawa, Wako-shi, Saitama 351–01, Japan
T. Wada
Affiliation:
Frontier Research Program (RIKEN) 2–1, Hirosawa, Wako-shi, Saitama 351–01, Japan
A. F. Garito
Affiliation:
Frontier Research Program (RIKEN) 2–1, Hirosawa, Wako-shi, Saitama 351–01, Japan
H. Sasabe
Affiliation:
Frontier Research Program (RIKEN) 2–1, Hirosawa, Wako-shi, Saitama 351–01, Japan
A. Yamada
Affiliation:
Frontier Research Program (RIKEN) 2–1, Hirosawa, Wako-shi, Saitama 351–01, Japan
Get access

Abstract

Second order molecular susceptibilities β of poly(γ – benzyl L–glutamate)(PBLG) and poly(γ – p–nitrobenzyl L–glutamate) (PNBLG) were determined by means of dc-induced second harmonic generation (dc-SHG technique in solutions at a wavelength of 1064nm as 1.5×10–−29 esu and −4.9×10−29 esu, respectively. Among PBLG, PNBLG and nitrobenzene, it was found that only PNBLG has negative value of β. It follows that the effect of nitrophenyl groups in side chains is dominant for β whereas the contribution of carbonyl groups in main chain is dominant for the permanent dipole moment μ in PNBLG.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Meredith, G. R., Dusen, J. G. Van, and Williams, D. J., Macromolecules 15, 1385 (1982).Google Scholar
[2] Meredith, G. R., Dusen, J. G. Van, and Williams, D. J., ACS Symp. Ser. 233,109134 (1983).Google Scholar
[3] Singer, K. D., Sohn, J. E., and Lalama, S. J., Appl. Phys. Lett., 49, 2413 (1986).Google Scholar
[4] Oshima, R., Wada, T. and Kumanotani, J., J. Polym. Sci. Polym. Chem. Ed., 22, 2047 (1984).Google Scholar
[5] Oshima, R., Wada, T. and Kumanotani, J., J. Polym. Sdi. Polym. Cheju. Ed., 22, 3135 (1984).Google Scholar
[6] Watanabe, H., and YoshiDka, K., Biopolymers 2, 91 (1964).Google Scholar
[7] Levine, B. F., and Bethea, C. G., J. Chem. Phys., 65, 1989 (1976).Google Scholar
[8] Doty, P., Bradbury, J. H., and Holtzer, A. M., J. Am. Chem. Soc., 78, 947 (1956).Google Scholar
[9] Singer, K. D., and Garito, A. F., J. Chem. Phys., 75, 3572 (1981).Google Scholar
[10] Teng, C. C., and Garito, A. F., Phys. Rev. B, 28, 6766 (1983).Google Scholar
[11] Lalama, S. J., Singer, K. D., Garito, A. F., and Desai, K. N., Appl. Phys. Lett., 39, 940 (1981).Google Scholar
[12] Maker, P. D., Terhune, R. W., Nisenoff, M., and Savage, C. M., Phys. Rev. Lett., 8, 21 (1962).Google Scholar
[13] Boyd, G. D., Kasper, H., and McFee, J. H., IEEE J. Quantum Electron. QE–7, 563, (1971).Google Scholar
[14] Bethea, C. G., Appl. Opt., 14, 1447 (1975).Google Scholar
[15] Levine, B. F., and Bethea, C. G., J. Chem. Phys., 63, 2666 (1975).Google Scholar
[16] Oudar, J. L., and Chemla, D. S., J. Chem. Phys., 66, 2664 (1977).Google Scholar
[17] Kleinman, D. A., Phys. Rev. 126, 1977 (1962).Google Scholar