Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:36:30.272Z Has data issue: false hasContentIssue false

Molecular Configurations and Solvation Forces in Confined Alkane Films

Published online by Cambridge University Press:  10 February 2011

Jee-Ching Wang
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
Kristen A. Fichthorn
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

We review the results of two studies [1,2] aimed at clarifying the surface forces of con fined fluids. In the first study [1], molecular-dynamics simulations are used to study the influence of chain branching on the molecular configurations of alkane films physically adsorbed on a solid surface. The symmetric n-decane molecules exhibit strong layering, while t-butyl-hexane films have a novel pillared-layered structure, in which a few randomly distributed molecules orient themselves with the t-butyl end near the surface and the alkyl tail perpendicular to the surface. These molecules are surrounded by parallel, layered molecules. In the second study [2], we outline the development of a new NPAT ensemble method, with advantages for simulating confined fluids. For confined Lennard-Jones particles simulated with the new method, clear oscillatory solvation-force profiles and step-like dependencies of the number of confined molecules on surface separation were observed. As the parallel pressure increases, the oscillations in solvation forces are enhanced and tend to become repulsive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J.-C. and Fichthorn, K. A., J. Chem. Phys. 108, p. 1,653 (1998).Google Scholar
2. Wang, J.-C. and Fichthorn, K. A., to be submitted to J. Chem. Phys.Google Scholar
3. Yoshizawa, H. and Israelachvili, J. N., J. Phys. Chem. 97, p. 11,300 (1993).Google Scholar
4. Brinker, C. J., Sehgal, R., Hietala, S. L., Deshpande, R., Smith, D. M., Loy, D., and Ashley, S. C., Membrance, J. Science 94, p. 85 (1994).Google Scholar
5. Sliwinska-Bartkowiak, M., Sowers, S. L., and Gubbins, K. E., Langmuir 13, p. 1,182 (1997).Google Scholar
6. Gee, M. L. and Israelachvili, J. N., J. Chem. Soc. Faraday Trans. 86, p. 4,049 (1990).Google Scholar
7. Kokkoli, E. and van Swol, F., J. Chem. Phys. 108, p. 4,675 (1997).Google Scholar
8. Israelachvili, J. N., Surf. Sci. Rep. 14, p. 109 (1992).Google Scholar
9. Christenson, H. K., Gruen, D. W. R., Horn, R. G., and Israelachvili, J. N., J. Chem. Phys. 87, p. 1,834 (1987).Google Scholar
10. Israelachvili, J. N., Kott, S. J. amd Gee, M. L., Macromolecules 22, p. 4,247 (1989).Google Scholar
11. Henderson, J. R., Mol. Phys. 48, p. 715 (1983).Google Scholar
12. Huang, D., Chen, Y. and Fichthorn, K. A., J. Chem. Phys. 101, p. 11,021 (1994).Google Scholar
13. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Clarendon Press, Oxford (1989)Google Scholar
14. Wang, J.-C. and Fichthorn, K. A., J. Chem. Phys. (in press).Google Scholar
15. Hautman, J. and Klein, M. L., J. Chem. Phys. 93, p. 7,483 (1991).Google Scholar
16. Granick, S., Demirel, A. L., Cai, L. L., and Peanasky, J., Isr. J. Chem. 35, p. 75 (1995).Google Scholar
17. Snook, I. K. and van Megen, W., J. Chem. Phys. 72, p. 2,907 (1980).Google Scholar
18. Schoen, M., Computer Simulation of Condensed Phases in Complex Geometries, Springer- Verlag, Berlin (1993).Google Scholar
19. Gao, J., Luedtke, W. D., and Landman, U., Phys. Rev. Lett. 79, p. 705 (1997).Google Scholar
20. Dijkstra, M., J. Chem. Phys. 107, p. 3,277 (1997).Google Scholar