Published online by Cambridge University Press: 27 June 2011
Modulated surface-textured substrates for thin-film silicon solar cells exhibiting high haze in a broad range of wavelengths were fabricated. Glass substrates coated with different thicknesses of a sacrificial layer were wet-etched allowing the manipulation of the surface morphology with surface roughness ranging from 200 nm up to 1000 nm. Subsequently, zinc-oxide layers were sputtered and then wet-etched constituting the final modulated textures. The morphological analysis of the substrates demonstrated the surface modulation, and the optical analysis revealed broad angle intensity distributions and high hazes. A small anti-reflective effect with respect to untreated glass was found for etched glass samples. The performance of solar cells on high-haze substrates was evaluated. The solar cells outperformed the reference cell fabricated on a randomly-textured zinc-oxide-coated flat glass. The trend in the efficiency resembled the increased surface roughness and the anti-reflective effect was confirmed also in solar cell devices.