Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:17:58.771Z Has data issue: false hasContentIssue false

A Modified SBN System for Pyroelectric Sensors

Published online by Cambridge University Press:  21 March 2011

H. Amorín
Affiliation:
Facultad de Física - Instituto de Materiales y Reactivos, Universidad de la Habana, Vedado, La Habana 10400, Cuba
F. Guerrero
Affiliation:
Facultad de Ciencias Naturales, Universidad de Oriente, Santiago de Cuba 90500, Cuba
J. Portelles
Affiliation:
Facultad de Física - Instituto de Materiales y Reactivos, Universidad de la Habana, Vedado, La Habana 10400, Cuba
M. Venet
Affiliation:
Facultad de Física - Instituto de Materiales y Reactivos, Universidad de la Habana, Vedado, La Habana 10400, Cuba
A. Fundora
Affiliation:
Facultad de Física - Instituto de Materiales y Reactivos, Universidad de la Habana, Vedado, La Habana 10400, Cuba
J. M. Siqueiros
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apartado Postal 2681, Ensenada, B.C., México, 22800
Get access

Abstract

The Thermally Stimulated Depolarization Current (TSDC) and pyroelectric properties of the modified SBN ferroelectric ceramic system were studied for different lanthanum and titanium doping concentrations. The TSDC measurements show the pyroelectric peak for all compositions while a second smaller peak at higher temperature, possibly associated to induced vacancy-impurity dipoles, is also observed in all cases. The second peak contribution was experimentally and mathematically eliminated to determine the remanent polarization and pyroelectric coefficient, both associated only to permanent ferroelectric dipoles. The figures of merit for sensor devices are determined for all compositions and compared with those of other pyroelectric systems. The La0.03Sr0.255Ba0.7 Nb1.95Ti0.05O5.975 sample, in particular, has excellent pyroelectric response, making this material very suitable for pyroelectricity-derived applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M. E. and Glass, A. M., “Principles and Applications of Ferroelectric and Related Materials”, (Clarendon Press, Oxford, 1977).Google Scholar
2. Liu, S. T. and Long, D., “Proceeding of the IEEE, Devices and Application”, 66 (1978) 14.10.1109/PROC.1978.10835Google Scholar
3. Whatmore, R. W., Ferroelectrics, 118 (1991) 241.10.1080/00150199108014764Google Scholar
4. Putley, E. H., “The Pyroelectric Detector”, Ed. Academic Press, New York (1970).Google Scholar
5. Xu, Yuhuan, “Ferroelectric Materials and their Applications”, Elsevier Science Publishers B. V., North-Holland (Los Angeles, USA, 1991).Google Scholar
6. Glass, A. M., J. Appl. Phys., 40 [12] (1969) 4699.Google Scholar
7. Lenzo, P. V., Spencer, E. G. and Ballman, A. A., Appl. Phys. Lett., 11 [1] (1967) 23.Google Scholar
8. Neurgaonkar, R. R. and Cory, W. K., J. Opt. Soc. Am. B: Opt. Phys., 3 [2] (1986) 274.10.1364/JOSAB.3.000274Google Scholar
9. Neurgaonkar, R. R., Kalisher, M. H., Lim, T. C., Staples, E. J. and Keester, K. L., Mater. Res. Bull., 15 [9] (1980) 1235.10.1016/0025-5408(80)90025-2Google Scholar
10. Subbarao, E. C. and Shirane, G., J. Chem. Phys., 32 (1960) 1846.10.1063/1.1731032Google Scholar
11. Umakantham, K., Chandramouli, K., Nageswara Rao, G. and Bhanumathi, A., Bull. Mater. Sci., 19 [2] (1996) 345.10.1007/BF02744671Google Scholar
12. Nagata, K., Yamamoto, Y., Igarashi, H. and Okazaki, K.., Ferroelectrics, 38 (1981) 853.Google Scholar
13. T., Liu S. and B., Maciolek R., J. Electron. Mater., 4 [1] (1975) 91.Google Scholar
14. T., Liu S. and S., Bhalla A., Ferroelectrics, 51 (1983) 47.Google Scholar
15. B., Jamieson P., C., Abrahams S. and L., Bernstein J., J. Chem. Phys., 48 [11] (1968) 5048.Google Scholar
16. Amorín, H., Portelles, J., Guerrero, F., Siqueiros, J., Revista Mexicana de Física, 44 [3] (1998) 217.Google Scholar
17. Ravez, J., Debadie, M., Von der Mühll, R. et Hagenmuller, P., J. Solid State Chem., 16 (1976) 423.Google Scholar
18. Amorín, H., Portelles, J., Guerrero, F., Fundora, A., Siqueiros, J., J. of Electroceramics 3, 371 (1999).Google Scholar
19. Amorín, H., Guerrero, F., Portelles, J., González, I., Fundora, A., Siqueiros, J. and Valenzuela, J., Solid State Comm., 106 [8] (1998) 555.10.1016/S0038-1098(98)00091-XGoogle Scholar
20. Guerrero, F., Portelles, J., González, I., Fundora, A., Amorín, H., Siqueiros, J. and Machorro, R., Solid State Comm., 101 [6] (1997) 463.10.1016/S0038-1098(96)00636-9Google Scholar
21. Guerrero, F., Portelles, J., Amorín, H., Fundora, A., Siqueiros, J. and Hirata, G., J. Europ. Ceram. Soc., 18 [7] (1998) 745.10.1016/S0955-2219(97)00154-4Google Scholar
22. Jaffe, A. and Cook, W., “Piezoelectric Ceramics”, Academic Press (London and New York, 1971).Google Scholar
23. Peláiz, A., Calderón, F., Pérez, O., Santos, J. and González, I., High Temp. High Press., 30 (1998) 179.Google Scholar
24. Bauer, S. and Ploss, B., J. Appl. Phys., 68 [12] (1990) 6361.10.1063/1.346882Google Scholar