Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:15:38.054Z Has data issue: false hasContentIssue false

Modification on the Unoccupied Electronic Structure of Organic Semiconductor by Alkali Metal

Published online by Cambridge University Press:  01 February 2011

Huanjun Ding
Affiliation:
hjding@pas.rochester.edu, university of rochester, department of physics and astronomy, Baush and Lomb Hall Room 8,, department of physics and astronomy,, university of rochester, rochester, NY, 14627, United States, 585-275-8588
Kiwan Park
Affiliation:
pkiwan@pas.rochester.edu, University of Rochester, Department of Physics and Astronomy, Rochester, NY, 14627, United States
Yongli Gao
Affiliation:
ygao@pas.rochester.edu, University of Rochester, Department of Physics and Astronomy, Rochester, NY, 14627, United States
Get access

Abstract

We have investigated the evolution of both the occupied and unoccupied states for alkali metal (Cs and Na) doped Copper-Phthalocyanine (CuPc) with photoemission and inverse photoemission spectroscopy. As the doping ratio increases, the lowest unoccupied molecular orbital (LUMO) of CuPc shifts downward, reaching the Fermi level. After the saturation, the LUMO intensity decreases monotonically, while a gap state grows in the valence spectra, which gives direct evidence for the origin of the doping-induced gap state in CuPc molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).10.1063/1.98799Google Scholar
2. Bao, Z., Lovinger, A. J., and Dodabaladur, A., Appl. Phys. Lett. 69, 3066 (1996).10.1063/1.116841Google Scholar
3. Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).10.1063/1.96937Google Scholar
4. Heeger, A. J., Schriefer, J. R., and Su, W. P., Rev. Mod. Phys. 40, 3439 (1988).Google Scholar
5. Tang, C. W. and VanSlyke, S. A., and Chen, C. H., J. Appl. Phys. 65, 3610 (1989).Google Scholar
6. Kido, J., Hongawa, K., Okyama, K., and Nagai, K., Appl. Phys. Lett. 64, 815 (1994).10.1063/1.111023Google Scholar
7. Gao, Y. and Yan, L., Chem. Phys. Lett. 380, 451 (2003).10.1016/j.cplett.2003.09.012Google Scholar
8. Yan, L., Watkins, N. J., Zorba, S., Gao, Y., and Tang, C. W. Appl. Phys. Lett. 79, 4148 (2001).10.1063/1.1426260Google Scholar
9. Mason, M.G., Tang, C.W., Hung, L -S., Raychaudhuri, P., Madathil, J., Giesen, D.J., Yan, L., Le, Q.T., Gao, Y., Lee, S.-T., Liao, L.S., Cheng, L.F., Salaneck, W.R., Santos, D.A. dos, and Brédas, J.L., J. of Appl. Phys. 89, 2756 (2001).10.1063/1.1324681Google Scholar
10. Ding, H. and Gao, Y., Appl. Phys. Lett. 86, 213508 (2005).10.1063/1.1935750Google Scholar
11. Wusten, J., Berger, S., Heimer, K., Lach, S., and Ziegler, Ch., J. of Appl. Phys. 98, 013705 (2005).Google Scholar
12. Wusten, J., Heimer, K., Lach, S., and Ziegler, Ch., J. of Appl. Phys. 102, 023708 (2007).Google Scholar
13. Namatame, H., Tamura, M., Nakatake, M., Sto, H., Ueda, Y., Taniguchi, M., and Fujisawa, M., J. Electron Spectrosc. Relat. Phenom. 80, 393 (1996).Google Scholar
14. Harima, Y., Yamashita, K., Ishii, H., Seki, K., Thin Solid Films, 366, 237 (2000).10.1016/S0040-6090(00)00887-7Google Scholar
15. Liao, M. S., Scheiner, S., J. Chem. Phys. 114, 9780 (2001).10.1063/1.1367374Google Scholar
16. Yakimov, A. and Forrest, S. R., Appl. Phys. Lett. 80, 1667 (2002).10.1063/1.1457531Google Scholar
17. G, I.. Hill, Kahn, A., Soos, Z. G., and Pascal, R. A. Jr, Chem. Phys. Lett. 327, 181 (2000).Google Scholar
18. Ding, H. and Gao, Y., J. Appl. Phys. 102, 043703 (2007).10.1063/1.2769952Google Scholar
19. Ding, H. and Gao, Y., unpublished.Google Scholar
20. Ding, H. and Gao, Y., Appl. Phys. Lett. 87, 051918 (2005).10.1063/1.2007858Google Scholar
21. Dose, V. and Reusing, G., Appl. Phys. 23, 131 (1980).10.1007/BF00899707Google Scholar