Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:44:35.380Z Has data issue: false hasContentIssue false

Modelling Size-Selected Growth of Nanodots by Using Reaction Kinetic Approach

Published online by Cambridge University Press:  01 February 2011

Kirsi Nevalainen
Affiliation:
kirsi.nevalainen@gmail.com, Helsinki University of Technology, Laboratory of Physics, P.O. Box 1100, Espoo, 02015, Finland, +358 9 451 5810
Marko Rusanen
Affiliation:
marko.rusanen@gmail.com, Helsinki University of Technology, Laboratory of Physics, P.O. Box 1100, Espoo, 02015, Finland
Ismo T. Koponen
Affiliation:
ismo.koponen@helsinki.fi, Helsinki University of Technology, Laboratory of Physics, P.O. Box 1100, Espoo, 02015, Finland
Get access

Abstract

The size selection of nanodots during the growth is modelled by using the reaction kinetic model with reaction rates for dot size dependent attachment and detachment processes, related to the free energy of dots. Long-lived metastable state is found near the minimum of free energy, but the kinetics of the growth causes the peak to overshoot the location of minimum of the energy. The size distribution of dots is shown to be nearly Gaussian with minor skewness originated from kinetics. However, it is argued that this skewness is inherently related to the effect of overshooting, and thus to the formation of the long lived metastable state with size selected nanodots. Based on RKM, a simple continuum model is derived to describe the size selection and narrowing of the size distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Priester, C., and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
2. Liu, F., Li, A.H., and Lagally, M.G., Phys. Rev. Lett. 87, 126103 (2001).Google Scholar
3. Gai, Z., Wu, B., Farnan, G.A., Shu, D., Wang, M., Zhang, Z. and Shen, J., Phys. Rev. Lett. 89, 235502 (2002).Google Scholar
4. Meixner, M., Schöll, E., Shchukin, V.A. and Bimberg, D., Phys. Rev. Lett. 87, 236101 (2001).Google Scholar
5. Jesson, D.E., Munt, T.P., Shchukin, V.A., and Bimberg, D., Phys. Rev. Lett. 92, 115503 (2004).Google Scholar
6. Dobbs, H.T., Vvedensky, D.D., Zangwill, A., Johansson, J., Carlsson, N., and Seifert, W., Phys. Rev. Lett. 79, 897 (1997).Google Scholar
7. Koduvely, H.M., and Zangwill, A., Phys. Rev. B 60, R2204 (1999).Google Scholar
8. Bales, G.S. and Zangwill, A., Phys. Rev. B 55, R1973 (1997).Google Scholar
9. Liu, F., Phys. Rev. Lett. 89 246105 (2002).Google Scholar
10. Rusanen, M., Koponen, I.T. and Asikainen, J., Eur. Phys. J. B 36, 567 (2003).Google Scholar
11. Velázquez, J.J.L., J. Stat. Phys. 92, 195 (1998).Google Scholar
12. Benamira, F., and Guechi, L., Europhys. Lett. 56, 8 (2001).Google Scholar
13. Risken, H., The Fokker-Planck Equation, Springer, Berlin (1984)Google Scholar
14. Lo, C.F., Europhys. Lett. 39, 263 (1997)Google Scholar