Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:44:34.707Z Has data issue: false hasContentIssue false

Modeling of Annealing of High Concentration Arsenic Profiles

Published online by Cambridge University Press:  21 March 2011

Paevl Fastenko
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Scott T. Dunham
Affiliation:
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Graeme Henkelman
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195, U.S.A.
Get access

Abstract

Understanding the diffusion and activation of arsenic is critical for the formation of low resistance ultra-shallow junctions as required for nanoscale MOS devices. In this work, we use results of ab-initio calcultions in order to gain insight into the fundamental process involved in arsenic activation/deactivation. Utilizing continuum modeling, we find it is possible to account for both the very rapid initial deactivation of arsenic as well as the strongly superline independence of interstitial supersaturation on doping level which accompanies deactivation. The critical process is the rearrangement of A s-atoms via in testitial mediated diffusion leading to ejection of silicon atoms from arsenic complexes and formation of arsenic-vacancy clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramamoorthy, M. and telides, S. Pan, Phys. Rev. Lett. 75, 4753 (1996).Google Scholar
2. Berding, M. and Sher, A., Phys. Rev. B 58, 3853(1998).Google Scholar
3. Luning, Scott, PhD thesis, Stanford University (1996).Google Scholar
4. Nobili, D., Carabelas, A., Celotti, G., and Solmi, S., J. Electrochem. Soc. 130, 922 (1983).Google Scholar
5. ousseau, Paul, PhD thesis, Stanford University (1996).Google Scholar
6. Herrera-Gomez, A., Rousseau, P. M., Materlik, G., Kendelewicz, T., Woicik, J.C., Griffin, P.B., Plummer, J., and Spicer, W. S., Appl. Phys. Lett. 68, 3090 (1996).Google Scholar
7. Lawther, D. W., Myler, U., Simpson, P. J., Rousseau, P. M., Griffin, P.B., Fang, W. T., and Plummer, J. D., Appl. hys. ett. 67, 3575 (1995).Google Scholar
8. Xie, Jianjun and Chen, S. P., J. Appl. Phys. 87, 4160 (2000).Google Scholar
9. Jónsson, H., Mills, G., and Jacobsen, K. W.. Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific (1998). ed. Berne, B. J., Ciccotti, G., and Coker, D. F., page 385.Google Scholar
10. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 16 (1996); Phys. Rev. B 55, 11169 (1996).Google Scholar
11. Perdew, J. P.. Electronic Structure of Solids. (1991). eds. Ziesche, P. and Eschrig, H..Google Scholar
12. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
13. Henkelman, G. and onsson, H., J. Chem. Phys. 111, 7010 (1999).Google Scholar
14. Solmi, S., Nobili, D., and Shao, J., J. Appl. Phys. 87, 658 (2000).Google Scholar
15. Guerrero, E., Potzl, H., Tielert, R., Grasserbauer, M., and Stingeder, G., J. Electrochem. Soc. 129, 1826 (1982).Google Scholar
16. Rousseau, P. M., Griffin, P.B., Fang, W. T., and Plummer, J.D., J. Appl. Phys. 84, 3593 (1998).Google Scholar
17. Gencer, A.H., Chakravarthi, S., Clejan, W. T., and Dunham, S. R., in Defects and Diffusion in Silicon Processing, 359 (1997).Google Scholar