Published online by Cambridge University Press: 22 February 2011
Atomic transport due to electromigration in interconnect lines in integrated circuits depends strongly on temperature. Therefore temperature nonuniformities can create sites of atomic flux divergence resulting in material accumulation or depletion leading to failure. The mechanical stress which will evolve at the sites of material flux divergence will oppose the electromigration driving force. A model is developed to describe the stress evolution during electromigration in the presence of temperature nonuniformnities. Solutions of the differential equations describing the electromigration-induced stress buildup are calculated numerically. The solutions are compared to experimental data in the literature.