No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
The diffusion of ion-implanted dopants in silicon during rapid thermal annealing is modeled using the finite difference method.The change in impurity profile for an initial Pearson IV boron implant is negligible(less than 1 % change in junction depth) when the peak annealing temperature(TP ) is less than 1050 °C and its duration is shorter than 20 seconds. The dopant redistribution becomes significant(greater than 25 % change in junction depth) when Tp is greater than 1200 °C and its duration is longer than 40 seconds.The heatup and cooldown portions of the transient annealing cycle are found to have little effect on dopant redistribution provided that their rates are higher than 120 °C per second.