Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:02:35.914Z Has data issue: false hasContentIssue false

MOCVD Growth and Characterization of GaInNAs/GaAs/InGaAs/GaAs Quantum Well Structures

Published online by Cambridge University Press:  11 February 2011

Abdel-Rahman A. El-Emawy
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106–4343, U.S.A.
Hongjun Cao
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106–4343, U.S.A.
Noppadon Nuntawong
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106–4343, U.S.A.
Chiyu Liu
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106–4343, U.S.A.
Marek Osiński
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, NM 87106–4343, U.S.A.
Get access

Abstract

Effects of MOCVD growth parameters on structural and optical properties of double-quantum-well (DQW) structures containing uncoupled GaInNAs/GaAs and InGaAs/GaAs quantum wells have been investigated. By varying growth temperature, growth rate, V/III ratio, and DMHy flow rates, we have achieved a longer-wavelength emission from a GaInNAs well than from an InGaAs well grown in the same structure. GaInNAs/GaAs multiple-quantum-well structures grown under optimum conditions emitted at 1.25 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Temkin, H., Coblentz, D., Logan, R. A., van der Ziel, J. P., Tanbun-Ek, T., Yadvish, R. D., and Sergent, A. M., Appl. Phys. Lett. 62, 2402 (1993).Google Scholar
2. Zah, C.-E., Bhat, R., Pathak, B. N.. Favire, F., Lin, W., Wang, M. C., Andreadakis, N. C., Hwang, D. M., Koza, M. A., Lee, T.-P., Wang, Z., Darby, D., Flanders, D., and Hsieh, J. J., IEEE J. Quantum Electron. 30, 511 (1994).Google Scholar
3. Shchekin, O. B., Ahn, J., and Deppe, D. G., Electron. Lett. 38, 712 (2002).Google Scholar
4. Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. Pt. 1, 35, 1273 (1996).Google Scholar
5. Kitatani, T., Nakahara, K., Kondow, M., Uomi, K., and Tanaka, T., Jpn. J. Appl. Phys. Pt. 2 (Lett.), 39, L86 (2000).Google Scholar
6. Li, N. Y., Hains, C. P., Yang, K., Lu, J., Cheng, J., and Li, P. W., Appl. Phys. Lett. 75, 1051 (1999).Google Scholar
7. Nakahara, K., Kondow, M., Kitatani, T., Larson, M., and Uomi, K., IEEE Photon. Technol. Lett. 10, 487(1998).Google Scholar
8. Schlenker, D., Pan, Z., Miyamoto, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys., Pt. 1, 38, 5023 (1999).Google Scholar
9. Sato, S. and Satoh, S., Jpn. J. Appl. Phys., Pt. 2 (Lett.), 38, L990 (1999).Google Scholar
10. Koyama, F., Schlenker, D., Miyamoto, T., Chen, Z., Matsutani, A., Sakaguchi, T., and Iga, K., Electron. Lett., 35, 1079 (1999).Google Scholar