Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:30:51.708Z Has data issue: false hasContentIssue false

Mn-Co oxide/PEDOT as a bifunctional electrocatalyst for oxygen evolution/reduction reactions

Published online by Cambridge University Press:  13 May 2015

Elaheh Davari
Affiliation:
Dept. Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
Douglas G. Ivey
Affiliation:
Dept. Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
Get access

Abstract

Bifunctional electrocatalysts, which facilitate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are vital components in advanced metal-air batteries. Results are presented for carbon-free, nanocrystalline, rod-like, Mn-Co oxide/PEDOT bifunctional electrocatalysts, prepared by template-free sequential anodic electrodeposition. Electrochemical characterization of synthesized electrocatalysts, with and without a conducting polymer (PEDOT) coating, was performed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). In addition, microstructural characterization was conducted using SEM, TEM, STEM and XPS. Mn-Co oxide/PEDOT showed improved ORR/OER performance relative to Mn-Co oxide and PEDOT. On the basis of rotating disk electrode (RDE) experiments, Mn-Co oxide/PEDOT displayed the desired 4-electron transfer oxygen reduction pathway. Comparable ORR activity and superior OER activity relative to commercial Pt/C were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caramia, V.; Bozzini, B. Mater. Renew. Sustain. Energy 2014, 3, 28.CrossRefGoogle Scholar
Li, Y.; Dai, H. Chem. Soc. Rev. 2014, 43, 52575275.CrossRefGoogle Scholar
Chen, Z.; Yu, A.; Higgins, D.; Li, H.; Wang, H. Nano Lett. 2012, 12, 19461952.CrossRefGoogle Scholar
Prabu, M.; Ramakrishnan, P.; Shanmugam, S. Electrochem. Commun. 2014, 41, 5963.CrossRefGoogle Scholar
Chowdhury, A. D.; Agnihotri, N.; Sen, P.; De, A. Electrochim. Acta 2014, 118, 8187.CrossRefGoogle Scholar
Babakhani, B.; Ivey, D. G. Electrochim. Acta 2011, 56, 47534762.CrossRefGoogle Scholar
Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.; Suib, S. L. J. Am. Chem. Soc. 2014, 2, 1145211464.CrossRefGoogle Scholar
Lin, X.; Shang, Y.; Huang, T.; Yu, A. Nanoscale 2014, 6, 90439049.CrossRefGoogle Scholar
Du, G.; Liu, X.; Zong, Y.; Hor, T. S. A.; Yu, A.; Liu, Z. Nanoscale 2013, 5, 46574661.CrossRefGoogle Scholar
Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. J. Am. Chem. Soc. 2012, 134, 35173523.CrossRefGoogle Scholar
Tang, Q.; Jiang, L.; Liu, J.; Wang, S.; Sun, G. ACS Catal. 2014, 4, 457463.CrossRefGoogle Scholar
Zhang, X.; Li, B.; Liu, C.; Chu, Q.; Liu, F.; Wang, X.; Chen, H.; Liu, X. Mater. Res. Bull. 2013, 48, 26962701.CrossRefGoogle Scholar
Li, C.; Imae, T. Macromolecules 2004, 37, 24112416.CrossRefGoogle Scholar
Bard, Allen J and Faulkner, L. R. Electrochemical Methods, 2nd ed.; John Wiley & Sons: New York, NY, 2001; pp 1861.Google Scholar
Zhang, Z.; Lim, S. H.; Li, B.; Wang, X.; Liu, Z. ACS Appl. Mater. Interfaces 2014, 6, 411.Google ScholarPubMed
Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 21722192.CrossRefGoogle Scholar
Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. D. Adv. Mater. 2012, 24, 51665180.CrossRefGoogle Scholar