Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T22:30:00.529Z Has data issue: false hasContentIssue false

Millimeter-Wave Driven Polyol Processing of Nanocrystalline Metals

Published online by Cambridge University Press:  14 March 2011

L. K. Kurihara
Affiliation:
Multifunctional Materials Branch, Code 6350 Also at Potomac Research Int., Fairfax, VA Naval Research Laboratory, Washington, DC 20375, Email: kurihara@anvil.nrl.navy.mil
D. Lewis
Affiliation:
Multifunctional Materials Branch, Code 6350 Naval Research Laboratory, Washington, DC 20375, Email: kurihara@anvil.nrl.navy.mil
A. M. Jung
Affiliation:
Beam Physics Branch, Code 6790
A. W. Fliflet
Affiliation:
Beam Physics Branch, Code 6790 Naval Research Laboratory, Washington, DC 20375, Email: kurihara@anvil.nrl.navy.mil
R. W. Bruce
Affiliation:
LET Corp., Washington, DC Naval Research Laboratory, Washington, DC 20375, Email: kurihara@anvil.nrl.navy.mil
Get access

Abstract

Nanocrystalline metallic powders and coatings have been synthesized using a millimeter wave driven polyol process. We have been able to prepare powders of single elements, alloys, metastable alloys, composites and coatings. Examples of a few of the metals processed in this study include Fe, Co, Ni, Cu, Ru, Rh, Pt, Au, FePt, FexCo100−x, NiAg and Cu-Ni. The polyol experiment was set up in the millimeter wave processing chamber, the beam was directed into the center of the solution and it was brought to reflux, using the millimeter wave beam as a heat source. Varying the power input easily controlled the rate of reflux.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tonguzzo, P., Viau, G., Archer, O., Guillet, F., Bruneton, E.. J. Mater. Sci., 35(2000).Google Scholar
2. Tonguzzo, P., Viau, G., Archer, O., Fievet-Vincent, F., and Fievet, F., Adv. Mater. 10, 1032 (1998)Google Scholar
3. Jungk, H. -O. and Feldmann, C., J. Mater. Res. 15, 2244(2000).Google Scholar
4. Merikhi, J., Jungk, H. -O., and Feldmann, C., J. Mater. Chem. 10, 1311(2000).Google Scholar
5. Tonguzzo, P., Archer, O., Viau, G., Pierrard, A., Fievet-Vincent, F., Fievet, F. and Rosenman, I., IEEE Trans. Magn. 35, 3469(1999).Google Scholar
6. Kurihara, L. K., Chow, G. M. and Schoen, P. E., Nanostruct. Mater. 5, 607(1995).Google Scholar
7. Chow, G. M., Kurihara, L. K., Kemner, K. M., Schoen, P. E., Elam, W. T., Ervin, A., Keller, S., Zhang, Y. D., Budnick, J., and Ambrose, T., J. Mater. Res. 10, 1546(1995).Google Scholar
8. Chow, G. M., Kurihara, L. K., and Schoen, P. E., U.S. Patent 5,759,230(1998).Google Scholar
9. Kurihara, L. K., Lewis, D., Jung, A. M., Fliflet, A. W., unpublished results 2000.Google Scholar
10. Lewis, D., Rayne, R. J., Bender, B. A., Kurihara, L. K. et al. Nanostruct Mater, 9, 97(1997)Google Scholar
11. Kurihara, L. K., Chow, G. M., Lewis, D., Bender, B., Baraton, M. I., and Schoen, P. E., to be published in J. Am. Ceram. Soc.Google Scholar
12. Fliflet, A. W., Bruce, R. W., Fischer, R. P., Lewis, D. Kurihara, L.K.., and Bender, B., to be published in IEEE Transactions on Plasma Science, (2001).Google Scholar
13. Kurihara, L. K., Lewis, D., Imam, M. A., Jung, A. M., Fliflet, A. W., and Bruce, R. W., unpublished results.Google Scholar
14. Kurihara, L. K., Chow, G. M., Lawrence, S. H., and Schoen, P. E., Processing and Properties of Nanocrystalline Materials, Suryanarayana, C., Singh, J. and Froes, F. H., Eds., TMS Minerals, Metals, Materials, Warrendale PA 49,235 (1996).Google Scholar