Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:24:42.305Z Has data issue: false hasContentIssue false

Migration Barriers and Evolution of Mechanical Properties of Oxide Nanoclusters Containing Helium

Published online by Cambridge University Press:  23 February 2015

Thomas Danielson
Affiliation:
Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA 24060, USA
Celine Hin
Affiliation:
Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA 24060, USA Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Department of Mechanical Engineering, Blacksburg, VA 24060, USA
Get access

Abstract

High number densities of complex oxide nanoclusters in nanostructured ferritic alloys have been shown to act as effective trapping sites for the transmutation product helium. Density functional theory has been used to investigate the evolution of the mechanical properties of oxide nanoclusters as helium concentration increases. The migration barrier and migration path of helium in the oxide has also been tested in order to make a comparison with the barriers in BCC iron and offer insight to the helium trapping mechanisms of the oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Odette, G.R., Alinger, M.J. and Wirth, B.D., Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
Schneibel, J.H., Heilmaier, M., Blum, W., Hasemann, G. and Shanmugasundaram, T., Acta Mat. 59, 1300 (2011).CrossRefGoogle Scholar
Klueh, R.L., Maziasz, P.J., Kim, I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N., Kenik, E.A. and Miyahara, K., J. Nucl. Mater. 307311, 773 (2002).CrossRefGoogle Scholar
McClintock, D.A., Hoelzer, D.T., Sokolov, M.A. and Nanstad, R.K., J. Nucl. Mater. 386388, 307 (2009).CrossRefGoogle Scholar
Miao, P., Odette, G.R., Yamamoto, T., Alinger, M. and Klingensmith, D., J. Nucl. Mater. 377, (2008) 5964.CrossRefGoogle Scholar
Brandes, M.C., Kovarik, L., Miller, M.K., Daehn, G.S. and Mills, M.J., Acta Mat. 60, 18271839 (2012).CrossRefGoogle Scholar
Schneibel, J.H., Liu, C.T., Miller, M.K., Mills, M.J., Sarosi, P., Heilmaier, M. and Sturm, D., Scripta Mat. 61, 793796 (2009).CrossRefGoogle Scholar
Klueh, R.L., Maziasz, P.J., Kim, I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N., Kenik, E.A. and Miyahara, K., J. Nucl. Mat. 307311, 773777 (2002).CrossRefGoogle Scholar
Hayashi, T., Sarosi, P.M., Schneibel, J.H. and Mills, M.J., Acta Mat. 56, 14071416 (2008).CrossRefGoogle Scholar
Fu, C.C. and Willaime, F., Phys. Rev. B 72, 064117 (2005).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Comput. Mat. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169, (1996).CrossRefGoogle Scholar
Blochl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
Danielson, T. and Hin, C., J. Nucl. Mater. 452, 189196 (2014).CrossRefGoogle Scholar
Danielson, T. and Hin, C., “First-principles investigation of helium in Y2O3 ”. (submitted September 2014).Google Scholar
Jonsson, H., Mills, G., Jacobsen, K.W., Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. Berne, B. J., Ciccotti, G. and Coker, D. F., editors. In: Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific. 1998.Google Scholar
Henkelman, G., Jónsson, H., J. Chem. Phys. 113, 99–1-9904 (2000).Google Scholar
Henkelman, G., Jónsson, H., J. Chem. Phys. 113, 99789985 (2000).CrossRefGoogle Scholar