Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T12:52:16.810Z Has data issue: false hasContentIssue false

Microwave-Assisted Synthesis of Cadmium Sulfide Nanoparticles: Effect of Hydroxide Ion Concentration

Published online by Cambridge University Press:  19 November 2013

Israel López
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, Mexico.
Idalia Gómez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, Mexico.
Get access

Abstract

Cadmium sulfide nanoparticles were synthesized by a microwave-assisted route in aqueous dispersion. The cadmium sulfide nanoparticles showed an average diameter around 5 nm and a cubic phase corresponding to hawleyite. The aqueous dispersions of the nanoparticles were characterized by UV-Vis spectroscopy, luminescence analysis, transmission electron microscopy and X-ray diffraction. The addition of sodium hydroxide solutions at different concentrations causes a red-shift in the wavelength of the first excitonic absorption peak of the cadmium sulfide nanoparticles, indicating a reduction of the band gap energy. Besides, the intensity of the luminescence of the nanoparticle dispersions was increased. However, there is a threshold concentration of the hydroxide ion above which the precipitation of the cadmium sulfide nanoparticles occurs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ge, L. and Liu, J., Mater. Lett. 65, 1828 (2011).Google Scholar
Hao, Y., Cao, Y., Sun, B., Li, Y., Zhang, Y., and Xu, D., Sol. Energy Mater. Sol. Cells 101, 107 (2012).CrossRefGoogle Scholar
Xi, Y., Hu, C., Zheng, C., Zhang, H., Yang, R. and Tian, Y., Mater. Res. Bull. 45, 1476 (2010).CrossRefGoogle Scholar
Wei, G., Yan, M., Ma, L. and Zhang, H., Spectrochim. Acta A 85, 288 (2012).CrossRefGoogle Scholar
López, I.A., Vázquez, A. and Gómez, I., Rev. Mex. Fis. 59, 160 (2013).Google Scholar
Feng, M., Chen, Y., Gu, L., He, N., Bai, J., Lin, Y. and Zhan, H., Eur. Polym. J. 45, 1058 (2009).CrossRefGoogle Scholar
Kim, J., Kim, Y. and Yang, H., Mater. Lett. 63, 614 (2009).CrossRefGoogle Scholar
Ikhmayies, S.J. and Ahmad-Bitar, R.N., Appl. Surf. Sci. 255, 8470 (2009).CrossRefGoogle Scholar
Badera, N., Godbole, B., Srivastava, S.B., Vishwakarma, P.N., Chandra, L.S., Jain, D., Gangrade, M., Shripathi, T., Sathe, V.G. and Ganesan, V., Appl. Surf. Sci. 254, 7042 (2008).CrossRefGoogle Scholar
Zhai, T., Gu, Z., Zhong, H., Dong, Y., Ma, Y., Fu, H., Li, Y. and Yao, J., Cryst. Growth Des. 7, 488 (2007).CrossRefGoogle Scholar
Dongre, J.K., Nogriya, V. and Ramrakhiani, M., Appl. Surf. Sci. 255, 6115 (2009).CrossRefGoogle Scholar
Phuruangrat, A., Thongtem, T. and Thongtem, S., Mater. Lett. 63, 1538 (2009).CrossRefGoogle Scholar
Tang, A., Teng, F., Hou, Y., Wang, Y., Tan, F., Qu, S. and Wang, Z., Appl. Phys. Lett. 96, 163112 (2010).CrossRefGoogle Scholar
Hullavarad, N.V. and Hullavarad, S.S., Photonics Nanostruct. 5, 156 (2007).CrossRefGoogle Scholar
Reda, S.M., Acta Materialia 56, 259 (2008).CrossRefGoogle Scholar
Caponetti, E., Martino, D.C., Leone, M., Pedone, L., Saladino, M.L. and Vetri, V., J. Colloid Interface Sci. 304, 413(2006).CrossRefGoogle Scholar
Amutha, R., Muruganandham, M., Lee, G.J. and Wu, J.J., J. Nanosci. Nanotechnol. 11, 7940 (2011).Google Scholar
Das, S., Mukhopadhyay, A.K., Datta, S. and Basu, D., Bull. Mater. Sci. 32, 1 (2009).Google Scholar
Pal, M., Mathews, N.R., Santiago, P. and Mathew, X., J. Nanopart. Res. 14, 916 (2012).CrossRefGoogle Scholar
Ricolleau, C., Audinet, L., Gandais, M. and Gacoin, T., Eur. Phys. J. D 9, 565 (1999).CrossRefGoogle Scholar
Spanhel, L., Haase, M., Weller, H. and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).CrossRefGoogle Scholar
Yu, W.W., Qu, L., Guo, W. and Peng, X., Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
Tsai, C.T., Chuu, D.S., Chen, G.L. and Yang, S.L., J. Appl. Phys. 79, 9105 (1996).CrossRefGoogle Scholar