Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:58:59.012Z Has data issue: false hasContentIssue false

Microstructure and tribological properties of gray cast iron specimens coated by aluminizing, boronizing, chromizing and siliconizing

Published online by Cambridge University Press:  15 January 2013

T. Murakami
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki 305-8564, Japan
K. Matsuzaki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Ibaraki 305-8564, Japan
Y. Gomi
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, Tokyo 102-0073, Japan
S. Sasaki
Affiliation:
Department of Mechanical Engineering, Tokyo University of Science, Tokyo 102-0073, Japan
H. Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
Get access

Abstract

In this study, aluminized, boronized, chromized and siliconized gray cast iron plate specimens were prepared, and their microstructures and tribological properties were investigated. The surfaces of the aluminized, boronized, chromized and siliconized specimens mainly consisted of FeAl, Fe2B, (Cr, Fe)23C6 and FeSi phases, respectively. Also, the surface of the boronized specimen exhibited the highest microvickers hardness of all the specimens. The aluminized, boronized and chromized specimens exhibited friction coefficients as low as the non-coated specimens when sliding against AISI 52100 steel ball specimens in poly-alpha-olefin. In addition, the boronized and chromized specimens exhibited much higher wear resistance than the non-coated specimens.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nayak, B.B., Kar, O.P.N., Behera, D., Mishra, B.K., Surf. Eng., 27, 99107 (2011).CrossRefGoogle Scholar
Sokolov, O.D., Mannapova, O.V., Kostrzhyts’kyi, A.I., Olik, A.P., Mater. Sci., 42, 849852 (2006).CrossRefGoogle Scholar
Dutta, R.S., Majumdar, S., Laik, A., Singh, K., Kulkarni, U.D., Sharma, I.G., Dey, G.K., Surf. Coat. Technol., 205, 47204725 (2011).CrossRefGoogle Scholar
Li, C., Li, M.S., Zhou, Y.C., Surf. Coat. Technol., 201, 60056011 (2007).CrossRefGoogle Scholar
Lee, S.Y., Kim, G.S., Kim, B.S., Surf. Coat. Technol., 177178, 178184 (2004).CrossRefGoogle Scholar
Choi, S.W., Kim, Y.C., Chang, S.H., Oh, I.H., Park, J.S., Kang, C.S., Trans. Nonferrous Met. Soc. China, 19, 875878 (2009).CrossRefGoogle Scholar
Tatemoto, K., Ono, Y., Sizuki, R.O., J. Phys. Chem. Solids, 66, 526529 (2005).CrossRefGoogle Scholar
Murakami, T., Hibi, Y., Mano, H., Matsuzaki, K., Inui, H., Intermetallics, 20, 6875 (2012).CrossRefGoogle Scholar
Murakami, T., Kaneda, K., Nakano, M., Mano, H., Korenaga, A., Sasaki, S., Intermetallics, 15, 15731581 (2007).CrossRefGoogle Scholar
Murakami, T., Kaneda, K., Nakano, M., Xia, Y., Sasaki, S., Tribol. Int., 43, 312319 (2010).CrossRefGoogle Scholar
Schoen, R., Roberson, C.E., American Mineralogist, 55, 4377 (1970).Google Scholar
Burroughs, B.R., Kim, J.H., Blanchet, T.A., Tribol. Trans., 42, 592600 (1999).CrossRefGoogle Scholar
Demichelis, R., Civalleri, B., Noel, Y., Meyer, A., Dovesi, R., Chem. Phys. Lett., 465, 220225 (2008).CrossRefGoogle Scholar
Jozwiak, W.K., Ignaczak, W., Dominiak, D., Maniecki, T.P., Appl. Catal. A: Gen., 258, 3345 (2004).CrossRefGoogle Scholar
Erdemir, A., Tribol. Lett., 8, 97102 (2000).CrossRefGoogle Scholar
Murakami, T., Mano, H., Hibi, Y., Matsuzaki, K., Inui, H., Tribol. Int., 56, 18 (2012).CrossRefGoogle Scholar
Panas, I., Svensson, J.E, Asteman, H., Johnson, T.J.R., Johansson, L.G., Chem. Phys. Lett., 383, 549554 (2004).CrossRefGoogle Scholar