Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:33:09.116Z Has data issue: false hasContentIssue false

A Microstructural Analysis of Orientation Variation in Epitaxial AlN on Si, Its Probable Origin, and Effect on Subsequent GaN Growth

Published online by Cambridge University Press:  10 February 2011

R. Beye
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
T. George
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. W. Yang
Affiliation:
APA Optics Inc., 2950 N.E. 84th Lane, Blaine, MN 55434
M. A. Khan
Affiliation:
APA Optics Inc., 2950 N.E. 84th Lane, Blaine, MN 55434
Get access

Abstract

A structural examination of aluminum nitride growth on [111 ] silicon was carried out using transmission electron microscopy. Electron diffraction indicates that the basal planes of the wurtzitic overlayer mimic the orientation of the close-packed planes of the substrate. However, considerable, random rotation in the basal plane and random out of plane tilts of about ±3–4$ are evident. The orientation variations were traced to the Si interface, where crystallites and an amorphous-like background were present. A strong relationship between these phenomena and substrates containing Si is established by comparing the present growth results with those reported elsewhere. Crystalline quality of the overgrown GaN on the AIN layer is described, with suggestions for the relation between surface pyramids or peaks and the mis-oriented buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett., 64, 13(1994).Google Scholar
2. Stevens, K. S., Ohtani, A., Schwartzman, A. F., Beresford, R., J. Vac. Sci. Technol. B12(2), 1186(1994).Google Scholar
3. Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., Akasaki, I., J. Cryst. Growth, 128, 391(1993).Google Scholar
4. Rossner, U., Rouviere, J.-L., Bourret, A., Barski, A. in GaN and related Materials, Edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., Edmond, J. A., (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 145150.Google Scholar
5. Measurement group, Inc., Raleigh, N. Carolina.Google Scholar
6. Martin, G.A., Sverdlov, B. N., Botchkarev, A., Morkoc, H., Smith, D. J., Tsen, S.-C. Y., Thompson, W. H., Nayfeh, M. H. in GaN and related Materials, Edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., Edmond, J. A., (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 6772.Google Scholar
7. Kim, Ig-Hyeon, Jeon, Chan-Wook, Kim, Seon-Hyo in GaN and related Materials, Edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., Edmond, J. A., (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 313318.Google Scholar
8. Ponce, F. A., Krusor, B. S., Major, J. S. Jr., Plano, W. E., Welch, D. F., Appl. Phys. Lett, 67(3), 411(1995).Google Scholar
9. Ohtani, A., Stevens, K. S., Beresford, R., Appl. Phys. Lett. 65(1), 61(1994).Google Scholar
10. Basu, S. N., Lei, T., Moustakas, T.D., J. Mater. Res. 9(9), 2370(1994).Google Scholar
11. Hiramatsu, K., Kitamura, S., Sawaki, N., in GaN and related Materials, Edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., Edmond, J. A., (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 267271.Google Scholar
12. Rouviere, J.-L., Arlery, M., Bourret, A., Niebuhr, R., Bachem, K.-H., in GaN and related Materials, Edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., Edmond, J. A., (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 393398.Google Scholar