Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:13:51.487Z Has data issue: false hasContentIssue false

Microporous Silicon Nitride-Based Solid Bases

Published online by Cambridge University Press:  15 February 2011

J. S. Bradley
Affiliation:
Max-Planck-Institut ftir Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülihei Man der Ruhr, Germany. bradley@mpi-muelheim.mpg.de
O. Vollmer
Affiliation:
Max-Planck-Institut ftir Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülihei Man der Ruhr, Germany. bradley@mpi-muelheim.mpg.de
R. Rovai
Affiliation:
Max-Planck-Institut ftir Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülihei Man der Ruhr, Germany. bradley@mpi-muelheim.mpg.de
F. Lefebvre
Affiliation:
Laboratoire de Chimie Organométallique de Surface, UMR CNRS-CPE 9986 43 Bd du 11 novembre 1918, 69616 Villeurbanne Cedex. France
Get access

Abstract

High surface area, microporous, amorphous silicon imidonitride, characterized by infrared spectroscopy, MAS 29Si NMR and surface area and porosity measurements has been prepared by the treatment of co-oligomers of methylsilazane and dimethyl silazanes with gaseous ammonia at temperatures up to 700°C. The material has a narrow pore-size distribution showing a maximum in the range associated with wide- pore zeolites (ca. 0.72 nm mean). Variation of the organic content of the silazane is a means of controlling the surface area of the resulting solid. The Knoevenagel condensation reaction of benzaldehyde with a series of active methylene compounds has been used to probe the basicity and size-selectivity of these microporous solid base catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schnick, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 806.Google Scholar
2. New Solid Acids and Bases: Their Catalytic Properties; Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H., Ed.; Elsevier: Amsterdam, 1989; Vol. 51.Google Scholar
3. Hölderich, W. F. In 10th International Congress on Catalysis; Elsevier Science: Budapest, Hungary, 1992; pp 127.Google Scholar
4. Ono, Y.; Baba, T. Catalysis Today 1997, 38, 321.Google Scholar
5. Hattori, H. Chem. Rev. 1995, 95, 537.Google Scholar
6. Desmaison, J.; Giraud, D.; Billy, M. Rev. Chim. Minerale 1972, 9, 417.Google Scholar
7. Peters, D.; Jacobs, H. J. Less-Common Met. 1989, 146, 241.Google Scholar
8. Verbeek, W., German Offen. 2218960, 1973.Google Scholar
9. Seyferth, D.; Wiseman, G. H. J. Am. Ceram. Soc. 1984, 67, C132.Google Scholar
10. Laine, R. M.; Blum, Y. Organometallics 1986, 5, 2081.Google Scholar
11. Laine, R. M.; Blum, Y.; Chow, A.; Hamlin, R.; Schwartz, K. B.; Rowecliffe, D. Polymer Prepr. 1987, 28, 393.Google Scholar
12. Peuckert, M.; Vaahs, T.; Brtck, M. Adv. Mater. 1990, 2, 398.Google Scholar
13. Han, H.; Lindquist, D. A.; Haggerty, J. S.; Seyferth, D. Chem. Mater. 1992, 4, 705.Google Scholar
14. Dando, N. R.; Perrotta, A. J.; Strohmann, C.; Stewart, R. M.; Seyferth, D. Chem. Mater. 1993, 5, 1624.Google Scholar
15. Dismukes, J. P.; Johnson, J. W.; Bradley, J. S.; Millar, J. M. Chem. Mater. 1997, 9, 699.Google Scholar
16. Narasavage, D. M.; Interrante, L. V.; Marchetti, P. S.; Maciel, G. E. Chem. Mater., 3, 721, and references therein.Google Scholar
17. Takeuchi, H.; Noake, K.; Serita, T. US Patent 4,950,381 1990,Google Scholar
18. Ayama, K.; Noake, K.; Serita, T. US Patent 4,397,304 1990,Google Scholar
19. Lipowitz, J.; Rabe, J. A.; Frevel, L. K.; Miller, R. L. J. Mater. Sci. 1990, 25, 2118.Google Scholar
20. Bradley, J. S.; Vollmer, O.; Rovai, R.; Specht, U.; Lefebvre, F. Adv. Mater. 1998, 10, 938.Google Scholar
21. Maier, W. F.; Tilgner, I.-C.; Wiedhom, M.; Ko, H. C. Adv. Mater. 1993, 5, 726.Google Scholar
22. Maier, W. F.; Martens, J. A.; Klein, S.; Heilmann, J.; Parton, R.; Vercruysse, K.; Jacobs, P. A. Angew. Chem. 1996, 108, 222.Google Scholar
23. Seyferth, D.; Wiseman, G. H. J. Am. Ceram. Soc. 1984, 67, C132.Google Scholar
24. Seyferth, D.; Schwark, J. M. US Patent 4, 720,532 1984,Google Scholar
25. Leone, E. A.; Curran, S.; Kotun, M. E.; Carrasquillo, G.; van Weeren, R.; Danforth, S. C. J. Am. Ceram. Soc. 1996, 79, 513.Google Scholar
26. Laser Synthesized Silicon Nitride Powder: Chemical and Physical Characteristics; Sheldon, B. W.; Danforth, S. C., Ed.; American Ceramic Society: Westerville, OH, 1994; Vol. 42, pp 4754.Google Scholar
27. Gmelin: Handbook of Inorganic and Organometallic Chemistry, S. S. In Springer: Berlin, 1989: Vol. B4: pp 133.Google Scholar
28. Glemser, O.; Neumann, P. Z Anorg. Allgem. Chem. 1959, 298, 134.Google Scholar
29. Horvath, G.; Kawazo, K. J. Chem. Eng. Jpn. 1983, 16, 470.Google Scholar
30. Venero, A. F.; Chiou, J. N. Mat. Res. Soc. Symp. Proc. 1988, 111, 235.Google Scholar
31. Argon adsorption isotherms were performed at 87K on an Omnisorp 360 instrument (Coulter). Surface areas were determined derived from BET analysis of the low pressure part of the isotherm. Micropore size distribution was determined by the Horvath- Kawazoe model using ADP software, version 3.03,(Porotec GmbH, Frankfurt) using a nitrogen on carbon potential at 77K.Google Scholar
32. Lednor, P. W.; de Ruiter, R. J. Chem. Soc., Chem. Commun. 1989, 320.Google Scholar
33. Lednor, P. W.; de Ruiter, R.. Chem. Soc., Chem. Commun. 1991, 1625.Google Scholar
34. Kerr, G. T.; Shipman, G. F. J. Phys. Chem. 1968, 72, 3071.Google Scholar
35. Wong, H.; Yong, B. L.; Cheng, Y. C. Appl. Surf Sci. 1993, 72, 49.Google Scholar
36. Stein, A.; Wehrle, B.; Jansen, M. Zeolites 1993, 13, 291.Google Scholar
37. Grange, P.; Bastians, P.; Conanec, R.; Marchand, R.; Laurent, Y. Applied Catalysis A General 1994, 114, L191.Google Scholar
38. Climent, M. J.; Corma, A.; Fornés, V.; Frau, A.; G.-L., R.; Iborra, S.; Primo, J. J. Catal. 1996, 163, 392.Google Scholar