Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:03:46.418Z Has data issue: false hasContentIssue false

Micropillar array embedded system for single cell encapsulation in hydrogel

Published online by Cambridge University Press:  09 February 2015

Kyun Joo Park
Affiliation:
Department of Chemical & Biomolecular Engineering, KAIST, Korea.
Kyoung G. Lee
Affiliation:
Center for Nanobio Integration & Convergence Engineering (NICE), National Nanofab Center, Korea.
Seunghwan Seok
Affiliation:
Department of Chemical & Biomolecular Engineering, KAIST, Korea.
Bong Gill Choi
Affiliation:
Department of Chemical Engineering, Kangwon National University, Korea.
Seok Jae Lee
Affiliation:
Center for Nanobio Integration & Convergence Engineering (NICE), National Nanofab Center, Korea.
Do Hyun Kim*
Affiliation:
Department of Chemical & Biomolecular Engineering, KAIST, Korea.
Get access

Abstract

A cylindrical-shaped micropillar array embedded microfluidic device was proposed to enhance the dispersion of cell clusters and the efficiency of single cell encapsulation in hydrogel. Different sizes of micropillar arrays act as a sieve to break Escherichia coli (E. coli) aggregates into single cells in polyethylene glycol diacrylate (PEGDA) solution. We applied the external force for the continuous breakup of cell clusters, resulting in the production of more than 70% of single cells into individual hydrogel particles. This proposed strategy and device will be a useful platform to utilize genetically modified microorganisms in practical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tibbitt, M. W. and Anseth, K. S., Biotechnol. Bioeng., 103, 655 (2009).CrossRefGoogle Scholar
Zeming, K. K., Ranjan, S. and Zhang, Y., Nat. Commun., 4, 1625 (2013).CrossRefGoogle Scholar
Wang, K. W., Lee, K. G., Park, T. J., Lee, Y. C., Yang, J. W., Kim, D. H., Lee, S. J. and Park, J. Y., Biotechnol. Bioeng., 109, 289 (2011).CrossRefGoogle Scholar
Lee, K. G., Park, T. J., Soo, S. Y., Wang, K. W., Kim, B. I., Park, J. H., Lee, C. S., Kim, D. H. and Lee, S. J., Biotechnol. Bioeng., 107, 747 (2010).CrossRefGoogle Scholar
Hoffman, A. S., Adv. Drug Delivery Rev., 64, 18 (2012).CrossRefGoogle Scholar
Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinman, H. K. and Margolis, L., Stem Cells, 25, 553 (2007).CrossRefGoogle ScholarPubMed
Bernate, J. A., Liu, C., Lagae, L., Konstantopoulos, K. and Drazer, G., Lab Chip, 13, 1086 (2013).CrossRefGoogle Scholar
Amini, H., Sollier, E., Masaeli, M., Xie, Y., Ganapathysubramanian, B., Stone, H. A. and Carlo, D. D., Nat. Commun., 4, 1826 (2013).CrossRefGoogle Scholar
Chung, A. J., Pulidon, D., Oka, J. C., Amini, H., Masaeli, M. and Carlo, D. D., Lab Chip, 3, 2942 (2013).CrossRefGoogle Scholar
Hernández, R. M., Orive, G., Murua, A., and Pedraz, J. L., Adv. Drug. Deliv. Rev., 62, 711 (2010).CrossRefGoogle Scholar
Bernate, J. A., Liu, C., Lagae, L., Konstantopoulos, K., and Drazer, G., Lab Chip, 13, 1086 (2013).CrossRefGoogle Scholar
Kuhl, T., Guo, Y., Alderfer, J. L., Berman, A. D., Leckband, D., Israelachvili, J., and Hui, S. W., Langmuir, 12, 3003 (1996).CrossRefGoogle Scholar