Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:56:16.493Z Has data issue: false hasContentIssue false

Micro-Photoluminescence Study of Bio-conjugated CdSe/ZnS Nanocrystals

Published online by Cambridge University Press:  19 November 2013

L. Borkovska
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
N. Korsunska
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
T. Stara
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
O. Kolomys
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
V. Strelchuk
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv, Ukraine
T. Kryshtab*
Affiliation:
Instituto Politécnico Nacional – ESFM, Av. IPN, Ed. 9, U.P.A.L.M., 07738 Mexico D.F., Mexico
S. Ostapenko
Affiliation:
H Lee Moffitt Cancer Center and Research Institute, Tampa, Fl-33612, USA
G. Chornokur
Affiliation:
H Lee Moffitt Cancer Center and Research Institute, Tampa, Fl-33612, USA
C. M. Phelan
Affiliation:
H Lee Moffitt Cancer Center and Research Institute, Tampa, Fl-33612, USA
Get access

Abstract

The effect of bio-conjugation of CdSe/ZnS core-shell quantum dots (QDs) with Interleukin 10 (IL-10) antibodies on the aging of photoluminescence (PL) spectra of the QDs was investigated. The aging occurred upon storage of QDs for about 2 years or thermal annealing at 190 oC for up to 12 hours at atmospheric ambience and consisted in “blue” shifting the PL band position, increasing a PL band half-width and decreasing the PL intensity. The bio-conjugation is found to promote PL aging. The aging upon storage is attributed to the oxidation that decreases the QD core dimension, while the aging upon thermal annealing can be due to both oxidation and alloying of CdSe core and ZnS shell.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sapsford, K.E., Pons, T., Medintz, I.L. and Mattoussi, H., Sensors 6, 925 (2006).CrossRefGoogle Scholar
Mattoussi, H., Palui, G., and Na, H. B., Advanced Drug Delivery Reviews 64, 138 (2012).CrossRefGoogle Scholar
Chornokur, G., Ostapenko, S., Emirov, Yu., Korsunska, N. E., Sellers, T., and Phelan, C., Semicond. Sci. Technology 23, 075045 (2008)CrossRefGoogle Scholar
Dybiec, M., Chornokur, G., Ostapenko, S. Wolcott, A., Zhang, J. Z. Zajac, A., Phelan, C., Sellers, T., and Gerion, D., Appl. Phys. Letter 90, 263112 (2007).Google Scholar
Borkovska, L. V., Korsunska, N. E., Kryshtab, T. G., Germash, L. P., Pecherska, E. Yu., Ostapenko, S., and Chornokur, G., Semiconductors 43, 775 (2009).CrossRefGoogle Scholar
Kryshtab, T.G., Borkovska, L.V., Kolomys, O., Korsunska, N.O., Strelchuk, V.V., Germash, L.P., Pechers’ka, К.Yu., Chornokur, G., Ostapenko, S.S., Phelan, C.M., and Stroyuk, O.L., Superlattices and Microstructures 51, 353 (2012).CrossRefGoogle Scholar
Gerion, D., Pinaud, F, Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., and Alivisatos, A. P., J. Phys. Chem. B 105, 8861 (2001).CrossRefGoogle Scholar
Fan, H.M., Ni, Z.H., Feng, Y.P., Fan, X.F., Kuo, J.L., Shen, Z.X., and Zou, B.S., Appl. Phys. Lett., 90, 021921 (2007).CrossRefGoogle Scholar
Xia, X., Liu, Z., Du, G., Li, Y., and Ma, M., J. Phys. Chem. C 114, 13414 ( 2010).CrossRefGoogle Scholar
Lee, H., Holloway, P.H., Yang, H., Hardison, L., and Kleiman, V.D., J. Chem. Phys. 125, 164711 (2006).Google Scholar
Nazzal, A. Y., Wang, X., Qu, L., Yu, W., Wang, Yu., Peng, X., and Xiao, M., J. Phys. Chem. B 108, 5507 (2004).CrossRefGoogle Scholar