Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T02:35:48.692Z Has data issue: false hasContentIssue false

Microemulsion Synthesis of Nd0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3 Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Z. Q. Wang
Affiliation:
liujm@nju.edu.cn, Nanjing University, Department of Physics, Nanjing University, Hankou Road No.22, Nanjing, 210093, China, People's Republic of
K. B. Yin
Affiliation:
liujm@nju.edu.cn, Nanjing University, Department of Physics, Nanjing, 210093, China, People's Republic of
F. Gao
Affiliation:
liujm@nju.edu.cn, Nanjing University, Department of Physics, Nanjing, 210093, China, People's Republic of
K. F. Wang
Affiliation:
liujm@nju.edu.cn, Nanjing University, Department of Physics, Nanjing, 210093, China, People's Republic of
Z. F. Ren
Affiliation:
renzh@bc.edu, Boston College, Department of Physics, Boston, MA, 02467, United States
J. -M. Liu
Affiliation:
liujm@nju.edu.cn, Nanjing University, Department of Physics, Nanjing, 210093, China, People's Republic of
Get access

Abstract

Nd0.5Ca0.5MnO3 (NCMO) and Nd0.5Sr0.5MnO3 (NSMO) nanoparticles have been synthesized using microemulsion synthesis method, with hexamethylene alkyl, a mixture of OP and 1-hexanol, NaOH as oil phase, surfactant, and precipitating agent, respectively. The phase formation of NCMO and NSMO nanoparticles was examined. The final NCMO and NSMO nanoparticles have average particle size of 24 and 50 nm, respectively, and present high-quality crystallinity. Measurements of the magnetic properties suggest that the charge-order state favored for bulk NCMO phase collapses in NCMO nanoparticles. The spin freezing behavior for both NCMO and NSMO nanoparticles was identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moreo, A., Yunoki, S., and Dagotto, E., Science 283, 2035 (1999).Google Scholar
2. Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y., and Tokura, Y., Science 270, 961 (1995).Google Scholar
3. Martin, C., Maignan, A., Hervieu, M., and Raveau, B., Phys. Rev. B 60, 12191 (1999).Google Scholar
4. Rao, C. N. R., Arulraj, A., Cheetham, A. K., and Raveau, B., J. Phys.: Conden. Matter. 12, R83 (2000).Google Scholar
5. Hervier, M., Barnabe, A., Martin, C., Maignan, A., and Ravearu, B., Phys. Rev. B 60, R726 (1999).Google Scholar
6. Ma, X. Y., Zhang, H., Xu, J., Yang, Q., Sha, J., and Yang, D. R., Chemical Physics Letters 363, 579 (2002).Google Scholar
7. Zhang, G. Y. and Chen, J., J. Elect. Chem. Soc. 152, A 2069 (2005).Google Scholar
8. Zhua, D. L., Zhua, H., and Zhang, Y. H., J. Cryst. Growth 249, 172 (2003).Google Scholar
9. Spooren, J. and Walton, R. I. J. Solid State Chem. 178, 1683 (2005).Google Scholar
10. Liu, J. B., Wang, H., Zhu, M. K., Wang, B., and Yan, H., Mater. Res. Bull. 38, 817 (2003).Google Scholar
11. Herrig, H. and Hempelmann, R., Mater. Lett. 27, 287 (1996).Google Scholar
12. Giannakas, A. E., Vaimakis, T. C., Ladavos, A. K., Trikalitis, P. N., and Pomonis, P. J., J. Colloid & Interface Sci. 259, 244 (2003).Google Scholar
13. Fang, Y., Wang, J., Ng, S. C., Gan, L. M., and Chew, C.H., Ceramics Inter. 24, 507 (1998).Google Scholar
14. Wallin, M., Cruise, N., Klement, U., Palmqvist, A., and Skoglundh, M., Colloids and Surfaces A: Physicochem. Eng. Aspects 238, 27 (2004).Google Scholar
15. Millange, F., Brion, S., and Chouteau, G., Phy. Rev. B 62, 5619 (2000).Google Scholar
16. Troyanchuky, I. O., Efimovy, D. A., Samsonenkoy, N. V., Shapovalovay, E. F., and Szymczak, H., J. Phys.: Condens. Matter 10, 7957 (1998).Google Scholar
17. Joshi, J. P., Gupta, R., Sood, A. K., Bhat, S.V., Raju, A. R., and Rao, C. N., Phys. Rev. B 65, 024410 (2002).Google Scholar
18. Tomioka, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., and Tokura, Y., Phys. Rev. Lett. 74, 5108 (1995).Google Scholar
19. Tomioka, Y., Asamitsu, A., Kuwahara, H., and Moritomo, Y., Phys. Rev. B 53, R 1689 (1996).Google Scholar
20. Biswas, A., Das, I., and Majumdar, C., J. Appl. Phys. 98, 124310 (2005).Google Scholar
21. Rao, S. S., Anuradha, K. N., Sarangi, S., and Bhat, S.V., Appl. Phys. Lett. 87, 182503 (2005).Google Scholar
22. Ju, H. and Sohn, H.. J. Magn. Magn. Mater. 167, 200 (1997).Google Scholar