Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:38:11.230Z Has data issue: false hasContentIssue false

Micro Heteregeneous Approaches for the Insertion of Reprocessed and Combined Thorium Fuel Cycles in a PWR System

Published online by Cambridge University Press:  07 March 2016

Fabiana B. A. Monteiro
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Victor F. Castro
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil
Rochkhudson B. de Faria
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil
Ângela Fortini
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil
Clarysson A. M. Da Silva
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil
Claubia Pereira
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha Belo Horizonte, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Get access

Abstract

A micro heteregenous reprocessed fuel spiked with thorium in a PWR fuel element considering (TRU-Th) cycle was simulated using three different configurations and different fissile materials that varied from 6.0% to 7.0%. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a burned PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment, which was remained in the cooling pool for five years and then reprocessed using UREX+ technique. The keff and plutonium generation during the burnup were evaluated and compared with the standard fuel. This study was performed using the SCALE 6.0.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pope, M. A., Boer, B., Ougouag, A. M., Youinou, G., “Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs – Interin Report, Including Void Reactivity Evaluation”, Idaho National Laboratory, Fuel Cycle Research & Development, Idaho Falls, Idaho 83415, 2011.Google Scholar
“State-of-the-art Report on Innovative Fuels for Advanced Nuclear Systems”, https://www.oecd-nea.org/science/pubs/2014/6895-report-innovative-fuels.pdf (2014)Google Scholar
“Introduction of Thorium in the Nuclear Fuel Cycle:Short- to long-term considerations”, https://www.oecd-nea.org/science/pubs/2015/7224-thorium.pdf (2015)Google Scholar
Pereira, C., Leite, E. M., Faria, E. F., “Waste analysis generated by alternative reprocessing fuels from pressurised water reactions”, Annals of Nuclear Energy, Vol. 27, p. 449464, 2000.CrossRefGoogle Scholar
Pereira, C. ; Leite, E. M.. Non-Proliferating Reprocessed Nuclear Fuels In Pressurized Water Reactors: Fuel Cycle Options. Annals of Nuclear Energy, Grã-Bretanha, Vol. 25, n.12, p. 937962, 1998.Google Scholar
Todosow, Michael, Galperin, A., Herring, S., Kazimi, M., Downar, T., Morozov, A., “Use of Thorium in Light Water Reactor” Nuclear Technology, Vol. 151, N°.2 (2005).Google Scholar
David, Sylvain, Huffer, Elisabeth and Nifenecker, Hervé, “Revisiting the thorium-uranium nuclear fuel cycle”, Europhysicsnews, n.2, Vol. 38, p.2427, 2007. Available at http://www.europhysicsnews.org or or http://dx.doi.org/10.1051/EPN:2007007 Google Scholar
Feender, J. S., “Safeguards for the Uranium Extraction (UREX) +1A Process”. Thesis Submitted and Approved by the Office of Graduate Studies of Texas A&M University. May (2010).Google Scholar
Bowman, S. M., “KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO - VI Using GeeWiz”, ORNL/TM-2008/069.CrossRefGoogle Scholar
Goluoglu, S., Hollenbach, D. F. and Petrie, L. M., “CSAS6: Control Module For Enhanced Criticality Safety Analysis With KENO-VI”, ORNL/TM-2008/039.Google Scholar
DeHart, M. D., “Triton: a two-dimensional transport and depletion module for characterization of spent nuclear fuel”, ORNL/TM-2005/39, Version 6, Vol. I, Sect. T1, Nuclear Science and Technology Division.Google Scholar
Petrie, L. M., Fox, P. B., Lucius, K., “Standard Composition Library”, ORNL/TM-2005/39, Version 6,Vol. III, Sect. M8, Nuclear Science and Technology Division.Google Scholar
Eletrobrás Termonuclear, S.A., “Final safety Analysis Report – FSAR Angra 2”, Eletronuclear, Rio de Janeiro (1999).Google Scholar
Pereira, C., S. D. S COTA, “ Neutronic Evaluation Of The Nonproliferating Reprocessed Nuclear Fuelsin Pressurized Water Reactors”, Annals of Nuclear Energy, Grã-Bretanha, Vol. 24, n.10, p. 829834, 1997.Google Scholar