Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:58:40.109Z Has data issue: false hasContentIssue false

MgZnO Nanocrystallites: Photoluminescence and Phonon Properties

Published online by Cambridge University Press:  01 February 2011

John L. Morrison
Affiliation:
damean@turbonet.com, University of Idaho, Physics Department, United States
Xiang-Bai Chen
Affiliation:
chen7779@uidaho.edu, University of Idaho, Physics Department, United States
Jesse Huso
Affiliation:
jhuso@uidaho.edu, University of Idaho, Physics Department, United States
Heather Hoeck
Affiliation:
chen7779@uidaho.edu, University of Idaho, Physics Department, United States
James Mitchell
Affiliation:
lbergman@uidaho.edu, University of Idaho, Physics Department, United States
Leah Bergman
Affiliation:
lbergman@uidaho.edu, University of Idaho, Physics Department, United States
Tsvetanka Zheleva
Affiliation:
tzvetanka@us.army.mil, Army Research Lab, United States
Get access

Abstract

We report on the ultraviolet photoluminescence (UV-PL), Raman and structural properties of wurtzite MgxZn1-xO nanopowders of average size ∼ 30 nm that were synthesized via the thermal decomposition method. For the studied composition range of, the room temperature UV-PL was found to be tuned by ∼ 0.24 eV towards the UV-spectral range, and the PL emission was established to be due to an excitonic-type recombination mechanism. The first-order LO Raman mode was found to exhibit a blueshift of ∼ 33 cm-1. The LO-mode of the nanopowders is discussed in terms of a mixed A1-E1 symmetry phonon known as a quasi-LO mode. The observed 30 cm-1 blueshift indicates that the E1 is the principle symmetry component in the Raman scattering of the MgxZn1-xO nanopowders.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
2. Shan, F.K., Kim, B.I., Liu, G.X., Liu, Z.F., Sohn, J.Y., Lee, W.J., Shin, B.C., and Yu, Y.S., J. Appl. Phys. 95, 4772 (2004).CrossRefGoogle Scholar
3. Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., and Holland, O.W., Appl. Phys. Lett. 75, 3327 (1999).CrossRefGoogle Scholar
4. Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., Venkatesan, T., and Shen, H., Appl. Phys. Lett. 80, 1529 (2002).Google Scholar
5. Chen, J., Shen, W.Z., Chen, N.B., Qiu, D.J., and Wu, H.Z., J. Phys.: Condens. Matter 15, L475 (2003).Google Scholar
6. Bhattacharya, P., Das, R.R., and Katiyar, R.S., Appl. Phys. Lett. 83, 2010 (2003).CrossRefGoogle Scholar
7. Makino, T., Tamura, K., Chia, C.H., Segawa, Y., Kawasaki, M., Ohtomo, A., and Koinuma, H., Appl. Phys. Lett. 81, 2172 (2002).CrossRefGoogle Scholar
8. Zeuner, A., Alves, H., Hofmann, D.M., Meyer, B.K., Heuken, M., Blasing, J., Krost, A., Appl. Phys. Lett. 80, 2078 (2002).CrossRefGoogle Scholar
9. Rosseler, D.M., and Walker, W.C., Phys. Rev. Lett. 17, 310 (1966).Google Scholar
10. Jin, Y., Zhang, B., Yang, S., Wang, Y., Chen, J., Zhang, H., Huang, C., Cao, C., Cao, H., and Chang, R.P.H., Solid Stat. Commu. 119, 409 (2001).CrossRefGoogle Scholar
11. Murakawa, T., Fukadome, T., Hayashi, T., Isshiki, H., and Kimura, T., Phys. Stat. Sol. 1, 2564 (2004).Google Scholar
12. Bergman, L., Chen, X-B., Morrison, J.L., Huso, J., and Purdy, A.P., J. Appl. Phys. 96, 675 (2004).CrossRefGoogle Scholar
13. Chen, X-B., Morrison, J.L., Huso, J., Bergman, L., and Purdy, A.P., J. Appl. Phys. 97, 024302 (2005).CrossRefGoogle Scholar
14. Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., and Gnade, B.E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
15. Chen, Y., Hong, S-K., Ko, H-J., Nakajima, M., Yao, T., and Segawa, Y., Appl. Phys. Lett. 76, 245 (2000).CrossRefGoogle Scholar
16. Wang, L., and Giles, N.C., J. Appl. Phys. 94, 973 (2003).CrossRefGoogle Scholar
17. Valbis, Y.A., Kalder, K.A., Kuusmann, I.L., Lushchik, C.B., Ratas, A.A., Rachko, Z.A., Springis, M.E., and Tiit, V.M., JETP Lett. 22, 36 (1975).Google Scholar
18. Kuusmann, I.L. and Feldbakh, E.K., Sov. Phys. Solid Stat. 23, 259 (1981).Google Scholar
19. Fouquet, J. E. and Siegman, A. E., Appl. Phys. Lett. 46, 280 (1985).CrossRefGoogle Scholar
20. Schmidt, T., Lischka, K., Zulehner, W., Phys. Rev. B 45, 8989 (1992).CrossRefGoogle Scholar
21. Kiselev, A.A., Kim, K.W., Stroscio, M.A., Phys. Rev. B 59, 10212 (1999).CrossRefGoogle Scholar
22. Elestin, V.P., Kopaev, Y.V., Solid State Commun. 96, 897 (1995).CrossRefGoogle Scholar
23. Bergman, L., Dutta, M., and Nemanich, R.F. “Raman Scattering Spectroscopy and Analyses of III-V Nitride-Based Materials” in Raman Scattering in Materials Science, Ed. Weber, W.H. and Merlin, R., (Springer New York 2000).Google Scholar
24. Hayes, W., and Loudon, R., in “Scattering of Light by Crystals”, (John Wiley & Sons, New York, 1978).Google Scholar
25. Arguello, C.A., Rousseau, D.L., and Porto, S.P.S., Phys. Rev. 181, 1351 (1969).CrossRefGoogle Scholar
26. Bergman, L., Dutta, M., Balkas, C., Davis, R.F., Alexson, D., and Nemanich, R.J.. J. Appl. Physics 85, 3535 (1999).CrossRefGoogle Scholar
27. Chen, X-B, Morrison, J.L., Huso, J., Metzger, J.G., Bergman, L., and Efrima, S., Mater. Res. Soc. Symp. Vol. 831, E11.5.1 (2005).Google Scholar
28. Bergman, L., Chen, X-i, Husso, J., Morrison, J.L., Hoeck, H., J. Appl. Phys. 98, 093507 (2005).CrossRefGoogle Scholar
29. Bundesmann, C., Shubert, M., Spemann, D., Butz, T., Lorenz, M., Kaidashev, E.M., Grundmann, M., Ashkenov, N., Neumann, H., and Wagner, G., Appl. Phys. Lett. 81, 2376 (2002).CrossRefGoogle Scholar