Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T01:29:21.130Z Has data issue: false hasContentIssue false

Mg-induced Enhancement of ZnO Optical Properties via Electrochemical Processing

Published online by Cambridge University Press:  21 May 2012

Hongtao Shi
Affiliation:
Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928, U.S.A.
Kalie R. Barrera
Affiliation:
Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928, U.S.A.
Timothy L. Hessong
Affiliation:
Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928, U.S.A.
Cristhyan F. Alfaro
Affiliation:
Department of Physics and Astronomy, Sonoma State University, Rohnert Park, CA 94928, U.S.A.
Get access

Abstract

Electrochemical deposition was used to fabricate polycrystalline ZnO thin films in solutions containing zinc nitrate and hexamethylenetetramine. All samples showed intense UV photoluminescence (PL) near the band edge in addition to weak broad bands due to defects. When the source solution was slightly doped with Mg2+ ions, the defect induced emission was significantly suppressed while the UV peak position and intensity remained the same. Auger electron spectroscopy revealed no Mg contents in the films within the detection limit. A possible growth mechanism was proposed, based on the chemical reactivity of Mg and Zn, to interpret the observed PL data, which is supported by samples grown in Ca-doped solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.For a review of ZnO, see Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Huang, M. H., Mao, S., Feick, H., Yan, H., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
3. Wei, Y., Wu, W., Guo, R., Yuan, D., Das, S., and Wang, Z., Nano Lett. 10, 3414 (2010).Google Scholar
4. Cui, J. B. and Gibson, U. J., Appl. Phys. Lett. 87, 133108 (2005).Google Scholar
5. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
6. Lorenz, M., Kaidashev, E. M., Rahm, A., Nobis, Th., Lenzner, J., Wagner, G., Spemann, D., Hochmuth, H., and Grundmann, M., Appl. Phys. Lett. 86, 143113 (2005).Google Scholar
7. Trunk, M., Venkatachalapathy, V., Galeckas, A., and Kuznetsov, A. Yu., Appl. Phys. Lett. 97, 211901 (2010).Google Scholar
8. Cui, J. B., J. Phys. Chem. C 112, 10385 (2008).Google Scholar
9. Cao, B., Cai, W., Zeng, H., and Duan, G., J. Appl. Phys. 99, 073516 (2006).Google Scholar
10. Izaki, M. and Omi, T., J. Electrochem. Soc. 143, L53 (1996).Google Scholar
11. Bard, A., Faulkner, L., “ Electrochemical Methods – Fundamentals and Applications ,” (John Wiley and Sons, Inc., 1980) pp. 699.Google Scholar
12. Chukichev, M. V., Ataev, B. M., Mamedov, V. V., Alivov, Ya., and Khodos, I. I., Semiconductors 36, 1052 (2002).Google Scholar
13. Kärber, E., Raadik, T., Dedova, T., Krustok, J., Mere, A., Mikli, V., and Krunks, M., Nanoscale Res. Lett. 6, 359 (2011).Google Scholar
14. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
15. Jung, Y. S., Choia, W. K., Kononenko, O. V., and Panin, G. N., J. Appl. Phys. 99, 013502 (2006).Google Scholar
16. Vekilov, Y. K., Rusakov, A. P., and Tverd, Fiz., Sov. Phys. Solid State 13, 956 (1972).Google Scholar
17. Li, Y., Deng, R., Yao, B., Xing, G., Wang, D., and Wu, T., Appl. Phys. Lett. 97, 102506 (2010).Google Scholar
18. Ohtomo, A. and Tuskazati, A., Semicond. Sci. Technol. 20, S1 (2005).Google Scholar
19. Siegbahn, K., “ESCA Applied to Free Molecule,” (North Holland, Amsterdam, 1969).Google Scholar
20. Cotton, F. A., Wilkinson, G., Adv. Inorg. Chem. (Wiley-Interscience, New York, 1980) pp. 281282.Google Scholar