Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:18:55.456Z Has data issue: false hasContentIssue false

Metallic Binary Copper Chalcogenides with Orthorhombic Layered Structure

Published online by Cambridge University Press:  15 May 2015

Kaya Kobayashi
Affiliation:
Department of Math. and Phys., Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
Shinya Kawamoto
Affiliation:
Department of Math. and Phys., Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
Jun Akimitsu
Affiliation:
Department of Math. and Phys., Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
Get access

Abstract

Chalcogenide materials have regained attention after the recent recognition of the compatibility of transition metal dichalcogenides with graphene. Additionally, there has been a recent appreciation for the rich variety of properties they support due to the anomalies in the materials’ intrinsic band structure. These materials generally have layered structures and weak interlayer connection through the chalcogen layer and its van der Waals type bonding. We have synthesized orthorhombic copper telluride and measured its electrical transport properties. The results of these measurements reveal that the conduction is metallic in both the in-plane and out-of-plane directions. The range of stability of this structure is examined along with the lattice constants. The independence of the resistivity in samples to changes in excess copper indicates that the transport is essentially within the conducting planes. This result shows that the material hosts two-dimensional character likely due to its covalent interlayer bonding.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

von Klitzing, K, Rev. Mod. Phys. 58, 519 (1986).CrossRefGoogle Scholar
Andreev, A. F., JETP Lett. 46, 584 (1987).Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V. and Firsov, A. A., Nature 438, 197200 (2005).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Schuster, W., Mikler, H., and Komarek, K. L., Mon. Chem. 110, 11531170 (1979).CrossRefGoogle Scholar
Pashinkin, A. S. and Pavlova, L. M., Inorg. Mater. 41, 939 (2005) (Transl. from Neorg. Mater. CrossRefGoogle Scholar
41, 1070 (2005).) Google Scholar
Okamoto, H., J. Phase Equil., 12(3), 383 (1991).CrossRefGoogle Scholar
Baranova, R. V. and Pinsker, Z. G., Zhu. Str.Khi., 11, 690 (1970).Google Scholar
Stevels, A.L.N. and Wiegers, G. A., Recl. Trav. Chim. Pay-Bas 90, 352 (1971).CrossRefGoogle Scholar
Mater, S. F., Weihrich, R., Kurowski, D., and Pfitzner, A., Solid State Sci. 6, 15 (2004).CrossRefGoogle Scholar
Nowotny, H., Metallkd., Z., 37, 40 (1946).Google Scholar
Pashinkin, A. S. and Fedorov, V. A., Inorg. Mater., 39, 539 (2003) (Transl. from Neorg. Mater., 39, 647(2003)). CrossRefGoogle Scholar
Blachnik, R., Lasocka, M., and Walbrecht, U., J. Solid State Chem., 48, 431 (1983).CrossRefGoogle Scholar
Forman, S. A. and Peacock, M. A., Am. Mineral 34, 441 (1949).Google Scholar
Da Silva, J. L. F., Wei, S. -H., Zhou, J. and Wu, X., Appl. Phys. Lett. 91, 091902 (2007).CrossRefGoogle Scholar
McQueen, T. M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., Hor, Y. S., Allred, J., Williams, A. J., Qu, D., Checkelsky, J., Ong, N. P., and Cava, R. J., Phys. Rev. B 79, 014522 (2009).CrossRefGoogle Scholar
Somono, R. B. and Rembaum, A., Phys. Rev. Lett., 27, 402 (1971).CrossRefGoogle Scholar
Ziman, J. M., Electrons and Phonons, (Oxford University Press, Oxford, 1960).Google Scholar