Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T02:32:21.297Z Has data issue: false hasContentIssue false

Metal Wafer Bonding for MEMS Applications

Published online by Cambridge University Press:  01 February 2011

Viorel Dragoi
Affiliation:
v.dragoi@evgroup.com, EV Group, St. Florian/Inn, Austria
Gerald Mittendorfer
Affiliation:
g.mittendorfer@evgroup.com, EV Group, ST. Florian/Inn, Austria
Franz Murauer
Affiliation:
f.murauer@evgroup.com, EV Group, St. Florian/Inn, Austria
Erkan Cakmak
Affiliation:
E.Cakmak@EVGroup.com, Ev Group Inc., Tempe, Arizona, United States
Eric Pabo
Affiliation:
E.Pabo@EVGroup.com, EV Group Inc., Tempe, Arizona, United States
Get access

Abstract

Metal layers can be used as bonding layers at wafer-level in MEMS manufacturing processes for device assembly as well as just for electrical integration of different levels. One has to distinguish between two main types of processes: metal diffusion bonding and bonding with formation of an interface eutectic alloy layer or an intermetallic compound. The different process principles determine also the applications area for each. From electrical interconnections to wafer-level packaging (with emphasis on vacuum packaging) metal wafer bonding is a very important technology in MEMS manufacturing processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maszara, W. P., J. Electrochem. Soc. 138 (1), 1991, pp. 341.Google Scholar
2. Wallis, G. and Pommerantz, D., J. Appl. Phys. 40, p. 3946, 1969.Google Scholar
3. Niklaus, F., Stemme, G., Lu, J.-Q. and Gutmann, R. J., J. of Appl. Phys. 99 (2006), pp. 031101–1.Google Scholar
4. O'Brien, J., Hughes, P. J., Brunet, M., O'Neill, B., Alderman, J., Lane, B., O'Riordan, A. and O'Driscoll, C., J. of Micromech. Microeng. 11 (2001), pp. 353.Google Scholar
5. Wolffenbuttel, R. F. and Wise, K. D., Sensors & Actuators A, 43 (1994), pp. 223.Google Scholar
6. Welch III, W. C. and Najafi, K., in Proc. of IEEE MEMS 2008, pp. 806.Google Scholar
7. Tsau, C. H., Spearing, S. M., and Schmidt, M. A., J. of Microelectromech. Systems 13 (6), (2004) pp. 963.Google Scholar
8. Humpston, G., and Jacobson, D., in Principles of Soldering, ASM International 2004, pp. 231.Google Scholar
9. Schiering, C., Kostner, H., Lindner, P., and Pargfieder, S., Advanced Packaging 5 (2005), pp. 26.Google Scholar
10. Pozder, S., Jain, A., Chatterjee, R., Huang, Z., Jones, R.E., Acosta, E., Marlin, B., Hillmann, G., Sobczak, M., Kreindl, G., Kanagavel, S., Kostner, H., and Pargfrieder, Stefan, in Proc. of IEEE Interconnect Technology Conference - IITC 2008, Burlingame, USA, p. 46.Google Scholar
11. Sohn, Y.-C., Wang, Q., Ham, S.-J., and Jeong, B.-G., in Proc. of IEEE Int.Conf. on Electronic Comp.and Techn., Reno - Nevada, USA, 2007, pp. 633.Google Scholar
12. Chen, K.N., Tan, C.S., Fan, A., and Reif, R., Electrochem. and Solid-State Lett. 7 (1), (2004), pp. G14.Google Scholar
13. Yun, C.H., Martin, J.R., Chen, L., and Frey, T.J., ECS Transactions 16 (8), (2008), pp. 117.Google Scholar