Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:16:03.960Z Has data issue: false hasContentIssue false

Metal micromolding with surface engineered inserts

Published online by Cambridge University Press:  01 February 2011

Dongmei Cao
Affiliation:
dcao2@lsu.edu, Louisiana State University, Mechanical Engineering Dept, Baton Rouge, LA, 70803, United States
J. Jiang
Affiliation:
dcao2@lsu.edu
W. J. Meng
Affiliation:
wmeng@me.lsu.edu
Get access

Abstract

The LiGA (Lithographie, Galvanoformung, Abformung) technique is a leading micromanufacturing process for making polymer- and metal- based high-aspect-ratio microscale structures. Molding replication is the key LiGA step for economical mass production of metal-based HARMS. Using a hybrid technique, we have fabricated microscale Ta mold inserts. Surface engineering of Ta inserts by electrochemical polishing followed by conformal coating deposition has enabled successful high-temperature micromolding of Al and Cu. In this paper, the molding performance of Ta inserts coated with amorphous hydrogenated carbon based coatings and amorphous silicon nitride based coatings is compared. Issues of maximum molding force, demolding force, and coating durability are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Webb, R. L., Transactions of the ASME, J. Heat Transfer 127, 2 (2005).10.1115/1.1800512Google Scholar
2. Madou, M., Fundamentals of Microfabrication (CRC Press, Boca Raton, Florida, 2000).Google Scholar
3. Heckele, M., Bacher, W., Muller, K. D., Microsystem Technologies 4, 122 (1998).Google Scholar
4. Cao, D. M., Jiang, J., Meng, W. J., Jiang, J. C., Wang, W., Fabrication of high-aspect-ratio microscale Ta mold inserts with micro-electrical-discharge-machining, Microsystem Technologies, submitted (2005).Google Scholar
5. Cao, D. M., Jiang, J., Yang, R., Meng, W. J., Fabrication of high-aspect-ratio microscale mold inserts by parallel μEDM, Microsystem Technologies, submitted (2005).Google Scholar
6. Meng, W. J., Curtis, T. J., J. Electronic Materials 26, 1297 (1997).Google Scholar
7. Meng, W. J., Curtis, T. J., Rehn, L. E., Baldo, P. M., Surf. Coat. Technol. 120/121, 206 (1999).Google Scholar
8. Cao, D. M., Wang, T., Feng, B., Meng, W. J., Kelly, K. W., Thin Solid Films 398/399, 553 (2001).Google Scholar
9. Cao, D. M., Meng, W. J., Simko, S. J., Doll, G. L., Wang, T., Kelly, K. W., Thin Solid Films 429, 46 (2003).Google Scholar
10. Meng, W. J., Tittsworth, R. C., Jiang, J. C., Feng, B., Cao, D. M., Winkler, K., Palshin, V., J. Appl. Phys., 88, 2415 (2000).Google Scholar
11. Cao, D. M., Feng, B., Meng, W. J., Rehn, L. E., Baldo, P. M., Khonsari, M. M., Appl. Phys. Lett. 79, 329 (2001).Google Scholar
12. Shi, B., Meng, W. J., Rehn, L. E., Baldo, P. M., Appl. Phys. Lett. 81, 352 (2002).Google Scholar
13. Meng, W. J., Zhang, X. D., Shi, B., Tittsworth, R. C., Rehn, L. E., Baldo, P. M., J. Mater. Res. 17(10), 2628 (2002).Google Scholar
14. Meng, W. J., Zhang, X. D., Shi, B., Jiang, J. C., Rehn, L. E., Baldo, P. M., Tittsworth, R. C., Surf. Coat. Technol. 163/164, 251 (2003).Google Scholar
15. Zhang, X. D., Meng, W. J., Wang, W., Rehn, L. E., Baldo, P. M., Evans, R. D., Surf. Coat. Technol. 177/178, 325333 (2004).Google Scholar
16. Cao, D. M., Guidry, D., Meng, W. J., Kelly, K. W., Microsystem Technologies 9, 559 (2003).Google Scholar
17. Cao, D. M., Meng, W. J., Kelly, K. W., Microsystem Technologies 10, 323 (2004).Google Scholar
18. Cao, D. M., Meng, W. J., Microsystem Technologies 10, 662 (2004).Google Scholar
19. Cao, D. M., Jiang, J., Meng, W. J., Sinclair, G. B., Metal micromolding: further experiments and preliminary finite element analysis, Microsystem Technologies, submitted (2005).Google Scholar
20. Smithells Metals Reference Book, edited by Brandes, E. A. and Brook, B. B., Butterworth-Heinemann, Oxford (1998).Google Scholar
21. Meng, W. J., Crystal structure, mechanical properties, thermal properties, and refractive index of AlN, in Properties of Group III Nitrides, edited by Edgar, J. H., INSPEC, the Institution of Electrical Engineers, EMIS Data Reviews Series No. 11, London, 1994, p.22.Google Scholar
22. Griessen, R., Riesterer, T., in Hydrogen in Intermetallic Compounds I, edited by Schlapbach, L., Springer-Verlag, Berlin, 1988, p. 219.Google Scholar
23. Handwerker, C. A., Vaudin, M. D., Kattner, U. R., Lee, D. J., Interface reactions and phase stability in the Al-SiC system, in Metal-Ceramic Interfaces, Acta Scripta Metallurgica Proceeding Series Vol. 4, edited by Ruhle, M., Evans, A. G., Ashby, M. F., Hirth, J. P., Pergamon Press, Oxford, 1990, p. 129.Google Scholar