Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:23:27.456Z Has data issue: false hasContentIssue false

Metal incorporation into nanoporous carbon

Published online by Cambridge University Press:  15 February 2011

S. J. Henley
Affiliation:
Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 7XH, U.K.
N. E. P. Woolger
Affiliation:
Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 7XH, U.K.
J. D. Carey
Affiliation:
Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 7XH, U.K.
S. R. P. Silva
Affiliation:
Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 7XH, U.K.
G. M. Fuge
Affiliation:
School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K.
M. N. R. Ashfold
Affiliation:
School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K.
Get access

Abstract

Nanoporous carbon films were deposited by 248 nm pulsed laser ablation of a graphite target in different background pressures of argon (PAr). The morphology changed from smooth, high-density amorphous carbon films at PAr = 20 mTorr to ultra-low density nanoporous material at PAr = 380 mTorr. Subsequently, the nanostructural, chemical and electrical properties of metal containing nanoporous carbon samples were investigated by ablating graphite targets containing known contents of Ni and Co. We demonstrate how the ablation plume dynamics affect both the nanostructure of the material and the incorporation of metal atoms. The suitability of these functionalised ultra-low density materials for gas sensing applications is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wood, R. F., Chen, K. R., Leboeuf, J. N., Puretzky, A. A., and Geohegan, D. B., Phys. Rev. Lett. 79, 1571 (1997).Google Scholar
2. Thareja, R. K. and Dwivedi, R. K., Phys. Lett. A 222, 199 (1996).Google Scholar
3. Siegal, M. P., Overmyer, D. L., Kottenstette, R. J., Tallant, D. R., and Yelton, W. G., Appl. Phys. Lett. 80, 3940 (2002).Google Scholar
4. Voevodin, A. A., Laube, S. J. P., Walck, S. D., Solomon, J. S., Donley, M. S., and Zabinski, J. S., J. Appl. Phys 78, 4123 (1995).Google Scholar
5. Ong, H. C. and Chang, R. P. H., Phys. Rev. B 55, 13213 (1997).Google Scholar
6. Geretovszky, Z., Haraszti, T., Szörényi, T., Antoni, F., and Fogarassy, E., Appl. Surf. Sci. 208-209, 566 (2003).Google Scholar
7. Satyanarayana, B. S., Robertson, J., and Milne, W. I., J. Appl. Phys. 87, 3126 (2000).Google Scholar
8. Bruzzi, M., Piseri, P., Miglio, S., Bongiorno, G., Barborini, E., Ducati, C., Robertson, J., and Milani, P., Eur. Phys. J. B 36, 3 (2003).Google Scholar
9. Rode, A. V., Gamaly, E. G., and Luther-Davies, B., Appl. Phys. A 70, 135 (2000).Google Scholar
10. Wu, W. and Ting, J., Thin Solid Films 420, 166 (2003).Google Scholar
11. Dimigen, H., Hübsch, H., and Memming, R., Appl. Phys. Lett. 50, 1056 (1987).Google Scholar
12. Orlianges, J. C., Champeaux, C., Catherinot, A., Pothier, A., Blondy, P., Abelard, P., and Angleraud, B., Thin Solid Films, 453, 291 (2004).Google Scholar
13. Wang, H., Chiah, M. F., Cheung, W. Y., and Wong, S. P., Phys. Lett. A 316, 122 (2003).Google Scholar
14. Henley, S. J., Fuge, G. M., and Ashfold, M. N. R., J. Appl. Phys. 97, 023304 (2005).Google Scholar
15. Claeyssens, F., Ashfold, M. N. R., Sofoulakis, E., Ristoscu, C. G., Anglos, D., and Fotakis, C., J. Appl. Phys. 91, 9 (2002).Google Scholar
16. Voevodin, A. A. and Donley, M. S., Surf. Coatings Technol. 82, 199 (1996).Google Scholar
17. Zel'dovich, Y. B. and Raizer, Y. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966).Google Scholar
18. Ashfold, M. N. R., Claeyssens, F., Fuge, G., and Henley, S. J., Chem. Soc. Rev. 33, 23 (2004).Google Scholar