Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:15:00.276Z Has data issue: false hasContentIssue false

Metal Coated, fs-Laser Fabricated Silicon Spikes as Electron Emitters for Cold Cathode Applications

Published online by Cambridge University Press:  31 January 2011

Emmanuel Spanakis
Affiliation:
spanakis@materials.uoc.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Greece
Marios Barberoglou
Affiliation:
m_bar@iesl.forth.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Greece
Panagiotis Tzanetakis
Affiliation:
tzaneta@physics.uoc.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Crete, Greece
Costas Fotakis
Affiliation:
fotakis@iesl.forth.gr, Foundation for Research and Technology Hellas, Institute of Electronic Structure and Lasers, Heraklion, Crete, Greece
Get access

Abstract

We have studied the effect of thin metal coatings on the electron emission characteristics of self-assembled silicon microstructures with nearly identical sharp features. We have employed a common template of spikes produced by fs-laser self-driven structuring of Si on which several different metals have been deposited. We find that, in the pristine state and in vacuum conditions achievable in device applications, all metal coatings do not result in marked change of either the minimum electric field necessary for emission or the maximum obtainable current density. In contrast, the durability of the emitters depends strongly on the metal used and is always enhanced with respect to bare Si. Furthermore, no signs of degradation were found within the 3-day time scale of our experiments with gold and chromium. On the contrary, these two metal coatings resulted in emission characteristics improving with time in typical operation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Temple, D., Mater. Sci. Eng. R. 24, 185 (1999).10.1016/S0927-796X(98)00014-XGoogle Scholar
2. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E.R, J. Appl. Phys. 47, 5248 (1976).10.1063/1.322600Google Scholar
3. Yamamoto, S., Rep. Prog. Phys. 69, 181 (2006).10.1088/0034-4885/69/1/R04Google Scholar
4. Cui, J.B., Daghlian, C. P., Gibson, U. J., Püsche, R., Geithner, P. and Ley, L., J. Appl. Phys. 97, 044315 (2005).10.1063/1.1854206Google Scholar
5. Temple, D., Ball, C. A., Palmer, W. D., Yadon, L. N., Vellenga, D., Mancusi, J., McGuire, G. E. and Gray, H.F., J. Vac. Sci. Technol. B 13, 150 (1995).10.1116/1.587973Google Scholar
6. Sanchez, F., Morenza, J. L., Aguiar, R., Delgado, J. C., and Varela, M., Appl. Phys. A 66, 83 (1998); A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, Appl. Phys. A 69, S731 (1999).Google Scholar
7. Zorba, V., Tzanetakis, P., Fotakis, C., Spanakis, E., Stratakis, E., Papazoglou, D.G., and Zergioti, I., Appl. Phys. Lett. 88, 081103 (2006).10.1063/1.2177653Google Scholar
8. Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., Fotakis, C., Appl. Surf. Sci. 255, 5425 (2009).10.1016/j.apsusc.2008.07.130Google Scholar
9. Shen, M.Y., Crouch, C.H., Carey, J.E., Younkin, R., Mazur, E., Sheehy, M., and Frind, C.M., Appl. Phys. Lett. 82, 1715 (2003); S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, and G.A. Shafeev, Appl. Phys. A 73, 177 (2001); E. Skantzakis, V. Zorba, D.G. Papazoglou, I. Zergioti, and C. Fotakis, Appl. Surf. Sci. 252, 4462 (2006).10.1063/1.1561162Google Scholar
10. Ishikawa, J., Tsuji, H., Gotoh, Y., Sasaki, T., Kaneko, T., Nagao, M. and Inoue, K. J. Vac. Sci. Technol. B 11, 403 (1993).10.1116/1.586870Google Scholar
11. Ding, M., Kim, H., and Akinwande, A. I., Appl. Phys. Lett 75, 823 (1999); S. Kanemaru, T. Hirano, H. Tanoue, and J. Itoh, J. Vac. Sci. Technol. B 14, 1885 (1996).10.1063/1.124525Google Scholar
12. Johnson, S., Markwitz, A., Rudolphi, M., Baumann, H., Oei, S.P., Teo, K.B.K and Milne, W.I., Appl. Phys. Lett. 85, 3277 (2004).10.1063/1.1804604Google Scholar
13. Kao, K.C. and Hwang, H., Electrical Transport in Solids (Pergamon, London, 1981) p.150.Google Scholar
14. Endo, Y., Honjo, I. and Goto, S., J. Vac. Sci. Technol. B 16, 3082 (1998).10.1116/1.590495Google Scholar
15. Wurker, W., Roy, J. and Hesse, J., Mat. Res. Bull. 9, 971 (1974).10.1016/0025-5408(74)90178-0Google Scholar
16. Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981) p. 68.Google Scholar
17. Karabutov, A.V., Frolov, V.D., Loubnin, E.N., Simakin, A.V. and Shafeev, G.A., Appl. Phys. A 76, 413 (2003).10.1007/s00339-002-1715-yGoogle Scholar
18. Wei, Y., Chalamala, B. R., Smith, B.G., Penn, C.W., J. Vac. Sci. Technol. B 17, 233 (1999).10.1116/1.590544Google Scholar