Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:01:17.006Z Has data issue: false hasContentIssue false

Mechanisms of Initialization of Doped Sb-Te Phase-Change Media

Published online by Cambridge University Press:  01 February 2011

Samantha J. Towlson
Affiliation:
University of Cambridge, Dept. of Materials Science and Metallurgy, Cambridge, UNITED KINGDOM
Clifford A. Elwell*
Affiliation:
University of Cambridge, Dept. of Materials Science and Metallurgy, Cambridge, UNITED KINGDOM
Clare E. Davies
Affiliation:
Plasmon Data Systems Ltd, Melbourn, UNITED KINGDOM
A. Lindsay Greer
Affiliation:
University of Cambridge, Dept. of Materials Science and Metallurgy, Cambridge, UNITED KINGDOM
*
* corresponding author.
Get access

Abstract

Laser initialization of the chalcogenide optical-recording medium Ag-In-Sb-Te is investigated using transmission electron microscopy of the resulting microstructure. Initialization beam power and velocity are varied. The average inhomogeneous strain of the chalcogenide is estimated from X-ray peak broadening. At high power and low velocity a clearly defined columnar grain structure with low strain is produced, typical of directional solidification. At low power and high velocity the initialized structure has a high density of defects and high strain; this is attributed to crystallization from the amorphous rather than the liquid state. The beam power and linear velocity of laser initialization may therefore be used to control the microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zhou, G. F., Mater. Sci. Eng. A, 304, 73 (2001).Google Scholar
[2] Jeong, T. H., Seo, H., Yeon, C., Park, J. W., Lee, J. S. and Park, K. H., Jap. J. Appl. Phys., Pt 1, 39, 741 (2000).Google Scholar
[3] Chou, L. H., Chang, Y. Y., Y. C., and Wang, S. Y., Jap. J. Appl. Phys., Pt 1, 40, 3375 (2001).Google Scholar
[4] Iwasaki, H., Harigaya, M., Nonoyama, O., Kageyama, Y., Takahashi, M., Yamada, K., Deguchi, H. and Ide, Y., Y., , Jap. J. Appl. Phys., Pt 1, 32, 5241 (1993).Google Scholar
[5] Iwasaki, H., Ide, Y., Harigaya, M., Kageyama, Y. and Fujimura, I., Jap. J. Appl. Phys., Pt 1, 31, 461 (1992).Google Scholar
[6] Matsushita, T., Suzuki, A., Nishiguchi, T., Shibata, K. and Okuda, M., Jap. J. Appl. Phys., Pt 1, 34, 519 (1995).Google Scholar
[7] Jones, H., in “Vacancies ‘76” (eds. Smallman, R. E. and Harris, J. E.) The Metals Society, London, 1977, pp. 175184.Google Scholar
[8] Miyagawa, N., Gotoh, Y., Ohno, E., Nishiuchi, K. and Akahira, N., Jap. J. Appl. Phys., Pt 1, 32, 5324 (1993).Google Scholar
[9] Cullity, B. D., “Elements of X-ray Diffraction”, Prentice Hall, New York, pp. 176177 (2001)Google Scholar
[10] Price, S. J., “Chalcogenide alloys for optical recording”, PhD thesis, Univ. of Cambridge, UK, 2000.Google Scholar
[11] Price, S. J., Greer, A. L. and Davies, C. E., in Optical Data Storage 2000, eds. Stinson, D. G. and Katayama, R., Proc. Soc. of Photo-Optical Instrumentation Engineers (SPIE), vol. 4090 (2000), pp. 122130.Google Scholar
[12] Hunt, J. D., Mater. Sci. Eng. 65 (1984) 7583.Google Scholar
[13] Sposili, R. S. and Im, J. S., Appl. Phys. A, 67, 273 (1998).Google Scholar
[14] Cense, W. and Albers, W., J. Non-Cryst. Solids, 28 (1978) 391401.Google Scholar
[15] Cho, B. I., Hong, H. C., and Gill, B. L., Jap. J. Appl. Phys., Pt 1, 37, 2532 (1998).Google Scholar
[16] Akiyama, T., Yoshioka, K., Inoue, K., Isomura, H. and Ohta, T., Optical Rev. 2, 100 (1995).Google Scholar