Published online by Cambridge University Press: 21 March 2011
Low-k material integration issues that plague the microelectronics industry include the compromise in mechanical properties that one incurs in abandoning fully dense silica dieletrics. Typical elastic moduli of OSG low-k dieletric films are 2-10 GPa with corresponding hardnesses of 0.5 to 1.5 GPa. In the present study, the hardness and elastic modulus properties measured by nanoindentation of porous silica based low-k films are correlated with in initial estimates of density using a novel technique of spectroscopic ellispsometry. Transmission electron microscopy and X-ray photoelectron spectroscopy show the structural and chemical similarity of the films. Nanoindentation and spectroscopic ellipsometry results reflect significant deviations in material behavior from that expected from a simple model of silica (SiO2) with included voids or porosity, suggesting that the methyl groups are actively participating in the mechanical and optical properties of the material.