Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:41:50.581Z Has data issue: false hasContentIssue false

Mechanical Characterization of PbTe-based Thermoelectric Materials

Published online by Cambridge University Press:  01 February 2011

Fei Ren
Affiliation:
renfei79@gmail.com, Michigan State University, Chemical Engineering and Materials Science, 2527 Engineering Building, Michigan State University, East Lansing, MI, 48824, United States, 5179445225, 5174321003
Bradley D Hall
Affiliation:
hallbra6@msu.edu, Michigan State University, Chemical Engineering and Materials Science, East Lansing, MI, 48824, United States
Jennifer E Ni
Affiliation:
nijennif@msu.edu, Michigan State University, Chemical Engineering and Materials Science, East Lansing, MI, 48824, United States
Eldon D Case
Affiliation:
casee@egr.msu.edu, Michigan State University, Chemical Engineering and Materials Science, East Lansing, MI, 48824, United States
Joe Sootsman
Affiliation:
j-sootsman@northwestern.edu, Northwestern University, Department of Chemistry, Evanston, IL, 60208, United States
Mercouri G Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Department of Chemistry, Evanston, IL, 60208, United States
Edgar Lara-Curzio
Affiliation:
laracurzioe@ornl.gov, Oak Ridge National Laboratory, High temperature materials laboratory, Oak Ridge, TN, 37831, United States
Rosa M Trejo
Affiliation:
trejorm1@ornl.gov, Oak Ridge National Laboratory, High temperature materials laboratory, Oak Ridge, TN, 37831, United States
Edward J Timm
Affiliation:
timm@egr.msu.edu, Michigan State University, Department of Mechanical Engineering, East Lansing, MI, 48824, United States
Get access

Abstract

PbTe-based thermoelectric (TE) materials exhibit promising thermoelectric properties and have potential applications in waste heat recovery from sources such as truck engines and shipboard engines. TE components designed for these applications will be subject to mechanical/thermal loading and vibration as a result from in-service conditions, including mechanical vibration, mechanical and/or thermal cycling, and thermal shock.

In the current study, we present and discuss the mechanical properties of several PbTe-based compositions with different dopants and processing methods, including n-type and p-type specimens fabricated both by casting and by powder processing. Room temperature hardness and Young's modulus are studied by Vickers indentation and nanoindentation while fracture strength is obtained by biaxial flexure testing. Temperature dependent Young's modulus, shear modulus, and Poisson's ratio are studied via resonant ultrasound spectroscopy (RUS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hogan, T. P., Downey, A., Short, J., D'Angelo, J., Wu, C-I, Quarez, E., Androulakis, J., Poudeu, F. P., Sootsman, J., Chung, D-Y, Kanatzidis, M. G., Mahanti, S. D., Timm, E., Schock, H, Ren, Fei, Johnson, J., Case, E. D., J. Elect. Mater. 36 704710 (2007).Google Scholar
2. Lawn, B. R., Fracture of Brittle Solids, Cambridge University Press, New York, 1993.Google Scholar
3. Kaliakin, V. N., Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods, Marcel Dekker, Inc., New York, 2002.Google Scholar
4. Ren, F., Case, E. D., Timm, E. J., Jacobs, M. D. and Schock, H. J., Philosophical Magazine Letters, 86, 673682 (2006).Google Scholar
5. Pilchak, A. L., Ren, F., Case, E. D., Timm, E. J., Schock, H. J., Wu, C. I. and Hogan, T., Philosophical Magazine, 87, 45674591 (2007).Google Scholar
6. Shetty, D. K., Rosenfield, A. R., McGuire, P., Bansal, G. K. and Duckworth, W. H., American Ceramic Society Bulletin, 59, 11931197 (1980).Google Scholar
7. Wachtman, J. B., Mechanical Properties of Ceramics, (Wiley Interscience, 1996) pp. 83.Google Scholar
8. Oliver, W. C. and Pharr, G. M., Journal of Materials Research, 7, 15641583 (1992).Google Scholar
9. Ren, F., Case, E. D., Timm, E. J. and Schock, H., Journal of Alloys and Compounds, available online at doi:10.1016/j.jallcom.2007.01.086 (2007).Google Scholar
10. Ren, F., Case, E. D., Timm, E. J. and Schock, H., Philosophical Magazine, 87, 49074934 (2007).Google Scholar
11. Anstis, G. R., Chantikul, P., Lawn, B. R. and Marshall, D. B., Journal of the American Ceramic Society, 64, 533538 (1981).Google Scholar
12. Migliori, A. and Sarrao, J. L., Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation, (Academic Press, 1997).Google Scholar
13. Kim, S. S., Yamamoto, S. and Aizawa, T., Journal of Alloys and Compounds, 375, 107113 (2004).Google Scholar
14. Jiang, J., Chen, L. D., Bai, S. Q., Yao, Q. and Wang, Q., Scripta Materialia, 52, 347351 (2005).Google Scholar
15. Jiang, J., Chen, L. D., Bai, S. Q., Yao, Q. and Wang, Q., Materials Science and Engineering B-Solid State Materials for Advanced Technology, 117, 334338 (2005).Google Scholar
16. Yonenaga, I., Physica B, 308–310, 11501152 (2001).Google Scholar
17. McColm, I. J., Ceramic Hardness, Plenum Press, New York, 1990.Google Scholar
18. Yonenaga, I., Nikolaev, A., Yonenaga, I., Nikolaev, A., Melnik, Y., Dmitriev, V., Jpn. J. Appl. Phys., 40 L426 (2001).Google Scholar
19. Michot, G., George, A., Chabli-Brenac, A., Molva, E. S., Scr. Metall. 22 10431048 (1988).Google Scholar
20. Lawn, B. R. and Marshall, D. B., J. Am. Ceram. Socl, 62 347350 (1979).Google Scholar
21. Boccacini, A. R., J. Mater. Process. Tech., 65 302304 (1997).Google Scholar