Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:56:30.057Z Has data issue: false hasContentIssue false

Measurement of the Phonon Density of States of PuO2(+2%Ga)

Published online by Cambridge University Press:  28 May 2012

M. E. Manley
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
J. R. Jeffries
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
A. H. Said
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439, USA
C. A. Marianetti
Affiliation:
Department of Applied Physics, Columbia University, New York, New York 10027, USA
H. Cynn
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
B. M. Leu
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439, USA
M. Wall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Get access

Abstract

Inelastic x-ray scattering measurements of the phonon density of states (DOS) of PuO2(+2%Ga) were made and compared to recent predictions from the literature made using three leading theoretical approaches; Density Functional Theory (DFT), DFT plus the Hubbard U (DFT+U), and Dynamical Mean-Field Theory (DMFT). The DFT prediction, which does not account for strong electronic correlations, underestimates the measured energies of most features. The DFT+U and DMFT predictions, which include approximations to strong correlation effects, more accurately reflect the low energy features but exaggerate splitting in the highest energy optic oxygen modes. The exaggeration of the splitting is worse for DFT+U than for DMFT. The transverse acoustic mode shows the least sensitivity to calculation type, and is well reproduced by all three theories. The longitudinal acoustic mode, which is thought to control the thermal conductivity, is more sensitive to calculation type, suggesting an important role for electronic correlations in making application-critical predictions.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fultz, B., Prog. Mater. Sci. 55, 247352 (2010).Google Scholar
2. Thermal Conductivity: Theory, Properties, and Applications, edited by Tritt, Terry M. (Kluwer Academic, New York, 2004).Google Scholar
3. Minamoto, S., Kato, M., Konashi, K., Kawazoe, Y., J. Nucl. Mater. 385, 1820 (2009).Google Scholar
4. Zhang, P., Wang, B.-T., Zhao, X.-G., Phys. Rev. B 82, 144110 (2010).Google Scholar
5. Yin, Q., Savrasov, S. Y., Phys. Rev. Lett. 100, 225504 (2008).Google Scholar
6. Boettger, C. E., Ray, A. K., Int. J. Quantum Chem. 90, 1470 (2002).Google Scholar
7. McNeily, C., J. Nucl. Mater. 11, 53 (1964).Google Scholar
8. Raphael, G., Lallement, R., Solid State. Comm. 6, 383385 (1968).Google Scholar
9. Jollet, F., Jomard, G., Amadon, B., Crocombette, J. P., Torumba, D., Phys. Rev. B 80, 235109 (2009).Google Scholar
10. Jomard, G., Amadon, B., Bottin, F., and Torrent, M., Phys. Rev. B 78, 075125 (2008).Google Scholar
11. Prodan, I. D., Scuseria, G. E., and Martin, R. L., Phys. Rev. B 73, 045104 (2006).Google Scholar
12. Nakamura, H., Machida, M., and Kato, M., Phys. Rev. B 82, 155131 (2010).Google Scholar
13. Toellner, T. S., Altas, A. and Said, A. H., J. Synchrotron Rad. 18, 605 (2011).Google Scholar
14. Said, A. H., Sinn, H., and Divan, R., J. Synchrotron Rad. 18, 492 (2011).Google Scholar
15. Manley, M. E., Lander, G. H., Sinn, H., Alatas, A., Hults, W. L., McQueeney, R. J., Smith, J. L., Willit, J., Phys. Rev. B 67, 05302 (2003).Google Scholar
16. Wong, J., Krisch, M., Farber, D. L., Occelli, F., Schwartz, A. J., Chiang, T. C., Wall, M., Boro, C., and Xu, R. Q., Science 301, 1078 (2003).Google Scholar
17. Manley, M. E., Said, A. H., Fluss, M. J., Wall, M., Lashley, J. C., Alatas, A., Moore, K. T., and Shvyd’ko, Yu., Phys. Rev. B 79, 052301 (2009).Google Scholar
18. Robertson, J. L., Frase, H. N., Bogdanoff, P. D., Manley, M. E., Fultz, B., McQueeney, R. J., Philos. Mag. Lett. 79, 297304 (1999).Google Scholar
19. Manley, M. E., McQueeney, R. J., Robertson, J. L., Fultz, B., Neumann, D. A., Philos. Mag. Lett. 80, 591596 (2000).Google Scholar
20. Squires, G. L., Introductions to the Theory of Neutron Scattering (Cambridge University Press, Cambridge, 1978).Google Scholar
21. Manley, M. E., McQueeney, R. J., Fultz, B., Osborn, R., Kwei, G. H., and Bogdanoff, P. D., Phys. Rev. B 65, 144111 (2002).Google Scholar
22. Bosak, A. and Krisch, M., Phys. Rev. B 72, 224305 (2005).Google Scholar
23. Gibby, R. L., J. Nucl. Mater. 38, 163177 (1972).Google Scholar
24. Dolling, G., Cowley, R. A., Woods, A. D. B., Can. J. Phys. 43, 1397 (1965).Google Scholar