Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:49:31.770Z Has data issue: false hasContentIssue false

MBE Growth and Characterization of Zns/Gan Heterostructures

Published online by Cambridge University Press:  10 February 2011

E. C. Piquette
Affiliation:
Watson Laboratories of Applied Physics 128–95 California Institute Of Technology, Pasadena, California 91125
Z. Z. Bandić
Affiliation:
Watson Laboratories of Applied Physics 128–95 California Institute Of Technology, Pasadena, California 91125
J. O. McCaldin
Affiliation:
Watson Laboratories of Applied Physics 128–95 California Institute Of Technology, Pasadena, California 91125
T. C. McGill
Affiliation:
Watson Laboratories of Applied Physics 128–95 California Institute Of Technology, Pasadena, California 91125
Get access

Abstract

Heterostructures involving ZnS/GaN show promise for the injection of holes from p-GaN into n-ZnS. This combination could result in multi-color electroluminescent displays. We have grown single crystal ZnS on GaN and sapphire (0001) by MBE using elemental sources. The ZnS was grown at temperatures from 150°C–400°C, with beam flux equivalent pressures of (0.3 – 2.0) × 10−7 torr. Growth rates of up to 0.4 μm per hour were observed for the lower growth temperatures, with rapidly diminishing rates for temperatures above 350μC. The GaN substrate consisted of a 3 μm epilayer grown on sapphire by MOCVD. XPS analysis revealed the presence of carbon surface contamination on the GaN, which was removed by in situ exposure to an RF nitrogen plasma. RHEED observations indicate that the zincblende ZnS layers commonly contain (111) twins, although twin free films may be grown at a high substrate temperature. The samples were characterized using photoluminescence and X-ray diffraction. X-ray peaks typically had FWHM of 400 arcsec for ω/2θ scans, and somewhat worse for ω scans. Photoluminescence spectra of the ZnS films doped with Ag and Al demonstrated the well known blue donor acceptor transition at 440 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] King, C. N., J. Vac. Sci. Technol. A, 14, 1729 (1996).Google Scholar
[2] Handbook of Display Technology, Castellano, J. L., (Academic Press, San Diego CA, 1992) Chapter 6.Google Scholar
[3] Sato, Y., Takahashi, N., and Sato, S., Jpn. J. Appl. Phys. 35, L838 (1996).Google Scholar
[4] Yamaga, S., Physica B. 185, 500 (1993).Google Scholar
[5] Wu, B. J., Kuo, L. H., Depuydt, J. M., Haugen, G. M., Haase, M. A., and Salamancariba, L., Appl. Phys. Lett. 68, 379 (1996).Google Scholar
[6] Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
[7] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
[8] Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., and Stall, R. A., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
[9] Wang, M. W., McCaldin, J. O., Swenberg, J. F., McGill, T. C., and Hauenstein, R. J., Appl. Phys. Lett. 66, 1974 (1995).Google Scholar
[10] McCaldin, J. O., Wang, M. W., and McGill, T. C., J. Crystal Growth 159, 502 (1996).Google Scholar
[11] Yokoyama, M., Kashiro, K., and Ohta, S., J. Crystal Growth 81, 73 (1987).Google Scholar
[12] McClean, I. P. and Thomas, C. B., Scmnicon. Sci. and Technol. 7, 1394 (1992).Google Scholar
[13] Yao, T. and Maekawa, S., J. Crystal Growth 53, 423 (1981).Google Scholar
[14] Cook, J. W. Jr., Eason, D. B., Vaudo, R. P., and Schetzina, J. F., J. Vac. Sci. Tcchnol. B 10(2), 901 (1992).Google Scholar
[15] Ozanyan, K. B., May, L., Nicholls, J. E., Hogg, J. H. C., Hagston, W. E., Lunn, B., and Ashenford, D. E., Solid State Commun. 97, 345 (1996).Google Scholar
[16] Kanehisa, O., Shiiki, M., Migita, M., and Yamamoto, H., J. Crystal Growth 86, 367 (1988).Google Scholar
[17] Ohta, S., Kashiro, K., and Yokoyama, M., J. Crystal Growth 87, 217 (1988).Google Scholar
[18] Yoneda, K., Toda, T., Hishida, Y., and Niina, T., J. Crystal Growth 67, 125 (1984).Google Scholar
[19] Ayers, J. E., Ghandhi, S. K., and Schowalter, L. J., J. Crystal Growth, 113, 2156 (1991).Google Scholar
[20] Ichino, K., Onishi, T., Kawakami, Y., Fujita, S., and Fujita, S., J. Crystal Growth 138, 28 (1994). See Discussion section.Google Scholar
[21] Bandié, Z. Z., Piquette, E. C., McCaldin, J. O., and McGill, T. C., in preparation.Google Scholar
[22] Physics and Chemistry of II-VI Compounds, Eds. Avcn, M. and Prener, J. S. (North-Holland Amsterdam, 1967), Chapter 9.Google Scholar