Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T08:56:00.515Z Has data issue: false hasContentIssue false

Mathematical Simulation of the Copper Drossing in Lead Bath with Sulphur Injection

Published online by Cambridge University Press:  24 February 2012

Victor Hugo Gutiérrez Pérez
Affiliation:
Departamento de Ingeniería Metalúrgica, ESIQIE- IPN. A. Postal 118-431, México D.F. 07051, Tel xx(52) 55-5729-6000 ext. 54202, fax: xx(52) 55-5273-2996.
Alejandro Cruz Ramírez
Affiliation:
Departamento de Ingeniería Metalúrgica, ESIQIE- IPN. A. Postal 118-431, México D.F. 07051, Tel xx(52) 55-5729-6000 ext. 54202, fax: xx(52) 55-5273-2996.
Marissa Vargas Ramírez
Affiliation:
Centro de Investigación en Metalurgia y Materiales, Universidad Autónoma del Estado de Hidalgo. Carretera Pachuca-Tulancingo Km 4.5, Pachuca-Hgo. México 42084.
Marlenne Gonzalez Nava
Affiliation:
Departamento de Ingeniería Metalúrgica, ESIQIE- IPN. A. Postal 118-431, México D.F. 07051, Tel xx(52) 55-5729-6000 ext. 54202, fax: xx(52) 55-5273-2996.
Angélica Sánchez Martínez
Affiliation:
Departamento de Ingeniería Metalúrgica, ESIQIE- IPN. A. Postal 118-431, México D.F. 07051, Tel xx(52) 55-5729-6000 ext. 54202, fax: xx(52) 55-5273-2996.
Get access

Abstract

Lead is an engineering material used mainly in the manufacturing of lead-acid batteries for the automotive industry. Lead recovery from exhausted batteries is carried out by the pyrometallurgical route by injecting sulfur the powder reagent through a lance into the lead bath. In this work a mathematical simulation was carried out on the copper drossing process with the software COMSOL 3.4. A kinetic study of the injection process of the lance-kettle system was carried out. The copper concentration profiles were obtained according with the injection rate of the particles. The best conditions for the copper drossing process were an injection rate of 3.31 m/s at 380°C. The modeling results were validated with experimental results obtaining good agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ramachandra, Rao S., “Resource Recovery and Recycling from Metallurgical Waste”, Elsevier b. v.; pp 197200 (2006).Google Scholar
2.Davey, T.R., “The Physical Chemistry of Lead Refining”, Lead-Zinc-Tin, TMS, USA, pp 477507 (1980).Google Scholar
3.Plascencia B, G.., Romero S, A.., Morales, R. D., Hallen, M.Chavez A., L. y F.Sulfur Injection to Remove Copper from Recycled LeadCanadian Metallurgical Quarterly, Vol. 40, No 3, pp 309316, (2001).Google Scholar
4.Romero, A., Morales, R., Chávez, F., López, S.y Palafox, J., “IPN-ENERTEC Project. Elimination of Copper, Nickel and Silver in Liquid Lead” Metallurgical Department, ESIQIE- IPN, México, (Junio-Julio-1999).Google Scholar
5.Sohn, H.Y. & Wasdworth, M.E., “Kinetics of the Extractive Metallurgy Processes”. 1a Ed. Trillas, México. D.F., pp 2226, (1986).Google Scholar
6.Nilmani, M. & Langberg, D.E., “The Production of Nickel-Zinc Alloys by Powder Injection”, Metallurgical Processes for Early Twenty-First Century, TMS, (1994).Google Scholar
7.Vargas, M., “Simulation of Permanent and Transitory Reaction During Reagents Powder Injection in Pig Iron”, M.Sc. Thesis, ESIQIE-IPN, México, (1997).Google Scholar
8.Parker, R.H., “An Introduction to Chemical Metallurgy”, Ed. Butterworths, Londres, pp 127128, (1971).Google Scholar
9.Levenspiel, Octave, “Chemical Reaction Engineering”, Ed. Repla, S.A.; pp 407410 (1987).Google Scholar
10.Gaskell, David R.; “An Introduction to Transport Phenomena in Materials Engineering”, Ed. Macmillan Publishing Inc., pp. 536547, (1992).Google Scholar
11.Gutierrez, V.H., “Mathematical Simulation of Powder Injection in Lead Bath”, M.Sc-Thesis, ESIQIE-IPN, México (2010).Google Scholar