Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T15:02:43.080Z Has data issue: false hasContentIssue false

Materials Study of the Competing Group-V Element Incorporation Process in Dilute-Nitride Films

Published online by Cambridge University Press:  31 January 2011

Wendy L. Sarney
Affiliation:
wendy.l.sarney@us.army.mil, U.S. Army Research Laboratory, Sensors & Electron Devices Directorate, Adelphi, Maryland, United States
Stefan P. Svensson
Affiliation:
stefan.svensson@us.army.mil, U.S. Army Research Laboratory, Sensors & Electron Devices Directorate, Adelphi, Maryland, United States
Get access

Abstract

The incorporation of small amounts of N into III-V antimonide-containing semiconductor alloys allows a drastic expansion of available wavelengths for infrared (IR) detector applications. Quaternary films containing three group-V elements can be lattice matched to the most prevalent substrates for IR applications, such as InAs, GaAs, and GaSb. It is not trivial to incorporate N while maintaining the high crystalline quality required for IR devices. Current materials characterization studies of dilute-nitride films consisting of more than two group-V elements has yielded conflicting information related to their competing behavior and the extent of N incorporation. Due to challenges related to light-element microanalysis for many characterization techniques, and the small concentrations of N involved, it is difficult to quantify the amount of N incorporated into dilute-nitride films. In this study, we use transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD) to study the incorporation behaviors of the competing group-V elements in InAsSbN films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S. and Yazawa, Y., Jpn. J. Appl. Phys. 35, 1273 (1996).Google Scholar
[2] Ashley, T., Burke, T.M., Pryce, G.J., Adams, A.R., Andreev, A., Murdin, B.N., O'Reilly, E.P., Pidgeon, C.R., Solid State Electron. 47 (3), 387 (2003).Google Scholar
[3] Ashley, T., Buckle, L., Smith, G.W., Murdin, B.N., Jefferson, P.H., Louis, F.J., Veal, T.D., McConville, C.F., Infrared Technology and Applications XXXII, Proceedings of the SPIE 6206, 62060L (2006).Google Scholar
[4] Svensson, S.P., Belenky, G., Meyer, J., Shterengas, L. and Vurgaftman, I., submitted to J. Vac. Sci. Technol., B 2009.Google Scholar
[5] Zhuang, Q., Godenir, A.M. R., Krier, A., Lai, K. T., and Haywood, S. K., J. Appl. Phys. 103, 063520 (2008).Google Scholar
[6] Ma, T.C., Lin, Y.T, Lin, H.H., J. Cryst. Growth 310, 2854 (2008).10.1016/j.jcrysgro.2008.02.015Google Scholar
[7] Wicaksono, S.W., Yoon, S.F., Tan, K.H. and Cheah, W.K., J. Cryst. Growth 274, 355 (2005).10.1016/j.jcrysgro.2004.10.050Google Scholar
[8] Zhuang, Q., Godenir, A., Krier, A., Tsai, G., and Lin, H. H., Appl. Phys. Lett. 93, 121903 (2008).Google Scholar
[9] Sun, H.D., Calvez, S., Dawson, M.D., Gupta, J.A., Sproule, G.I., Wu, X., Wasilewski, Z.R., Appl. Phys. Lett. 87, 181908 (2005).Google Scholar
[10] Harmand, J.C., Ungaro, G., Largeau, L., and Roux, G. Le, Appl. Phys. Lett. 77, 2482 (2000).Google Scholar
[11] Volz, K., Gambin, V., Ha, W., Wistey, M., Yuen, H., Bank, S., Harris, J., J. Cryst. Growth 251, 360 (2003).Google Scholar