No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
The use of a hot stage (T ∼ 600°C) for ion implantation into graphite permits the introduction of foreign species into the host material while eliminating most of the lattice damage associated with ion implantation at room temperature. This permits the use of the magnetoreflection technique for examination of changes in the electronic band structure induced by implantation Samples of graphite implanted with 31P and 11B at various energies and fluences are examined, and the in-plane and c-axis disorder are characterized using Raman spectroscopy and Rutherford Backscattering Spectrometer (RBS) techniques. Implantation-induced changes in the electronic band structure are interpreted in terms of the Slonczewski-Weiss- McClure band model. Small changes are found relative to the band parameters that describe pristine graphite.
The work at MIT was supported by ONR Grant #N00014–;77-C-0053