Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T11:46:58.816Z Has data issue: false hasContentIssue false

Magnetization and Magnetotransport Properties of Thermally Evaporated Co-Sn-Co Trilayer

Published online by Cambridge University Press:  26 February 2011

Alessandro Chiolerio
Affiliation:
alessandro.chiolerio@polito.it, Politecnico di Torino, Physics, Corso Duca degli Abruzzi 24, TORINO, I-10129, Italy
Paolo Allia
Affiliation:
paolo.allia@polito.it, Politecnico di Torino, Physics, Corso Duca degli Abruzzi 24, TORINO, I-10129, Italy
Marco Coisson
Affiliation:
m.coisson@inrim.it, INRIM, Divisione Elettromagnetismo, Strada delle Cacce 91, Torino, I-10127, Italy
Paola Tiberto
Affiliation:
p.tiberto@inrim.it, INRIM, Divisione Elettromagnetismo, Strada delle Cacce 91, Torino, I-10127, Italy
Get access

Abstract

We report on growth, morphology and magnetic behavior of the pseudo spin-valve (PSV) Si/Co(15 nm)/Sn(50 nm)/Co(15 nm). Thermal evaporation was chosen as experimental deposition technique for its versatility and cost effectiveness. Magnetisation and magnetotransport measurements performed at low temperature showed that the sample has a complex behaviour related to the different morphology and thickness of the outer Co layers. Combining magnetic and magnetotransport data, a model based on three magnetic phases has been developed, associating them to the Co underlayer, to the Co cap layer and to possible nanometre-sized Co islands embedded in the Sn layer, respectively. A three-phase model coherently explains both magnetisation and magnetoresistance datasets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Raedts, S, Bael, M.J. Van, Temst, K, Lange, M, Look, L. Van, Swerts, J, Moshchalkov, V.V. and Bruynseraede, Y, Physica C 369, 258 (2002);Google Scholar
2. Lange, M, Bael, M.J. and Moshchalkov, V.V., Physica C 408, 522 (2004);10.1016/j.physc.2004.03.063Google Scholar
3. Peterson, B.L., White, R.L. and Clemens, B.M., Physica B 336, 157 (2003);10.1016/S0921-4526(03)00285-0Google Scholar
4. Eisenmenger-Sittner, C., Bangert, H, Bergauer, A, Brenner, J, Störi, H., Barna, P.B., Vacuum 71, 253 (2003);10.1016/S0042-207X(02)00747-9Google Scholar
5. Chiolerio, A., Chiodoni, A. and Allia, P., Thin Solid Films submitted (2007);Google Scholar
6. Chiolerio, A., Allia, P., Tiberto, P. and Coisson, M., Journal of Physics: Condensed Matter submitted (2007);Google Scholar
7. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D. and Nogues, J. 2003 Nature 423 850853; Vargas J. M., Gomez J., Zysler R. D. and Bufera A., Nanotechnology 18 115714115719;10.1038/nature01687Google Scholar
8. Hubert, A. and Shaefer, R., Magnetic domains (Springer Verlag, Berlin, 1998) p. 238 and following;Google Scholar
9. Fert, A. and Bruno, P., Ultrathin magnetic structures II (Springer Verlag, Berlin, 1994) p. 82 and references therein;Google Scholar
10. Holland, J. H., Adaptation in Natural and Artificial Systems, (Reprinted MIT press, Cambridge, USA, 1992); Chwastek K. and Szczyglowski J., 2006 Mathematics and Computers in Simulation 71 206211.10.7551/mitpress/1090.001.0001Google Scholar