Published online by Cambridge University Press: 28 February 2011
Nuclear Magnetic Resonance (NMR) investigations on the Oak Ridge National Laboratory process for sol-gel synthesis of microspherical nuclear fuel (UO2), has been extremely useful in sorting out the chemical mechanism in the sol-gel steps. 13C, 15N, and 1H NMR studies on the HMTA gelation agent (hexamethylenetetramine, C6H12N4) has revealed near quantitative stability of this adamantane-like compound in the sol-gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. 17O NMR of uranyl (UO2++) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO2)3 (μ3-O)(μ2-OH)3]+, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results will be presented to illustrate that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH+ is occluded as an ‘intercalation’ cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH4)2 [(UO2)8 O4 (OH)10]- 8H2)O. This compound is the precursor to sintered UO2 ceramic fuel.