No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The synthesis, mechanical and magnetic properties of bulk composite Fe72B19.2Si4.8M4 (M=Cr, Zr) alloys obtained by a copper mould injection casting technique under a protective helium atmosphere are reported and discussed. The resultant microstructure of the composite alloys consists of crystalline Fe92Si8 and Fe2B phases embedded in a glassy matrix. The values of microhardness (Hv) show maxima for the alloy containing Cr with 10.24±0.95 GPa. The maximum value of saturation magnetization average (μ0Ms) is 1.25±0.02 T for Cr-containing alloy. The Curie temperatures (Tc) of amorphous phases are higher than 390 K for both alloys. However, the bulk composite alloys presents values for crystallization temperature (Tx) of 1289±10 K and 1140±10 K for Cr and Zr-containing alloys, respectively. These results are interpreted on the basis of the interplay between the crystalline and amorphous phases.