Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T22:47:42.408Z Has data issue: false hasContentIssue false

Magnetic Force Microscopy Analysis of Thermal Stability in Longitudinal Media

Published online by Cambridge University Press:  10 February 2011

E. N. Abarra
Affiliation:
Toyota Technological Institute, Nagoya 468, Japan, eabarra@toyota-ti.ac.jp
I. Okamoto
Affiliation:
FUJITSU Ltd., Atsugi 243-01, Japan
T. Suzuki
Affiliation:
Toyota Technological Institute, Nagoya 468, Japan, eabarra@toyota-ti.ac.jp
Get access

Abstract

The thermal stability of written bits in high density longitudinal recording media is investigated using magnetic force microscopy (MFM). The time dependence of the MFM signal is examined for different linear densities on CoCrPt-based media of various thickness. At ambient temperature, lesser decay is observed using the MFM compared to spin stand measurements on the same CoCrPtTaNb media on Al which emphasizes the dependence of bit stability with writing conditions. Moderate anneals at 373 K reveal a rapid initial ∼ 10% signal decay followed by stable behavior not observed in the magnetization time dependence measurements. 200 kfci tracks on a 20-nim thick CoCrPtTa medium on Si with a coercivity of 3 kOe displayed stable (∼ 2%) behavior against a 105-hour anneal at 373 K in air. These results are correlated with media properties to obtain parameters that are good indicators of thermal stability performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, P.-L. and Charap, S. H., IEEE Trans. Magn., vol. 30, 4230 (1994); vol. 31, 2767 (1995);Google Scholar
J. Appl. Phys. 75, 5768 (1994).Google Scholar
2. Uesaka, Y., Takahashi, Y., Nakatani, Y., Hayashi, N., and Fukushima, H., J. Mag. Mag. Mater. (1997).Google Scholar
3. Hosoe, Y., Tamai, I., Tanahashi, K., Takahashi, Y., Yamamoto, T., Kanbe, T., and Yajima, Y., IEEE Trans. Magn. vol. 33, 3028 (1997);Google Scholar
Hosoe, Y., Kanbe, T., Tanahashi, K., Tamai, I., Matsunuma, S., Takahashi, Y., Uesaka, Y., Yoshida, K., and Akagi, F., IEEE Trans. Magn., vol. 34 (1998), in press.Google Scholar
4. Judy, J. H., J. Magn. Soc. Japan, vol. 21, No. S2, (1997), and References therein.Google Scholar
5. Abarra, E. N. and Suzuki, T., IEEE Trans. Magn. vol. 33, 2995 (1997);Google Scholar
J. Mag. Mag. Mater. 175, 148 (1997).Google Scholar
6. Abarra, E. N., Phillips, G. N., Okamoto, I., and Suzuki, T., J. Magn. Soc. Japan, vol. 21, No. S2, 291 (1997).Google Scholar
7. Shimoda, K., Sugawara, T., Kasai, K., Ohshima, T., and Mizoshita, Y., IEEE Trans. Magn., vol. 33, 2812 (1997).Google Scholar
8. Bertram, H. N. and Zhu, J.-G., IEEE Trans. Magn., vol. 27, 5043 (1991).Google Scholar
9. Chang, J. J. K., Peng, Q., Bertram, H. N., and Sinclair, R., IEEE Trans. Magn., vol. 32, 4902 (1996).Google Scholar
10. Khanna, G., Freitag, J. M., and Clemens, B. M., this proceedings.Google Scholar
11. Bruno, P., Bayreuther, G., Beauvillain, P., Chappert, C., Lugert, G., Renard, D., Renard, J. P., and Seiden, J., J. Appl. Phys. 98, 5759 (1990);Google Scholar
Suzuki, T., Scripta. Met. Mat. 31, 1609 (1995).Google Scholar