Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:47:44.225Z Has data issue: false hasContentIssue false

Luminescent Colloidal SI Suspensions from Porous SI

Published online by Cambridge University Press:  15 February 2011

Julie L. Heinrich
Affiliation:
Departments of Chemistry and Electrical & Computer Engineering
Corrine L. Curtis
Affiliation:
Departments of Chemistry and Electrical & Computer Engineering
Grace M. Credo
Affiliation:
Departments of Chemistry and Electrical & Computer Engineering
Karen L. Kavanagh
Affiliation:
The University of California at San Diego, La Jolla, CA 92093-0407.
Michael J. Sailor
Affiliation:
Departments of Chemistry and Electrical & Computer Engineering
Get access

Abstract

A procedure for generating colloidal suspensions of Si exhibiting luminescence, attributed to quantum confinement effects, is described. Samples of n- or p-type Si, that have been electrochemically etched to form porous Si, can be ultrasonically dispersed into methylene chloride, acetonitrile, methanol, toluene, or water solvents, forming a suspension of fine Si particles that luminesce. Transmission electron microscopy analyses show the Si particles to have irregular shapes, with diameters ranging from many microns to nanometers. Luminescent, composite polystyrene/Si films can be made by the addition of polystyrene to a toluene suspension of the Si nanoparticles and casting of the resulting solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henglein, A., J. Chim. Phys. 84, 1043 (1987).Google Scholar
2. Henglein, A., Chem. Rev. 89, 1861 (1989).Google Scholar
3. Brus, L., J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
4. Fojtik, A., Weller, H., Henglein, A., Chem. Phys. Lett. 134, 477 (1987).CrossRefGoogle Scholar
5. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).CrossRefGoogle Scholar
6. Sandroff, C. J., et al., Science 245, 391 (1989).CrossRefGoogle Scholar
7. Olshavsky, M. A., Goldstein, A. N., Alivisatos, A. P., J. Am. Chem. Soc. 112, 9438 (1990).Google Scholar
8. Wang, Y., Acc. Chem. Res. 24, 133 (1991).Google Scholar
9. Jain, R., Lind, R., J. Opt. Soc. Am. 75, 647 (1983).CrossRefGoogle Scholar
10. Morgan, R. A., Park, S.-H., Koch, S. W., Peyghambarian, N., Semicond. Sci. Technol. 5, 544 (1990).Google Scholar
11.. DiMaria, D. J., et al., J. Appl. Phys. 56, 401 (1984).CrossRefGoogle Scholar
12. Lehmann, V., Gosele, U., Appl. Phys. Lett. 58, 856 (1990).CrossRefGoogle Scholar
13. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
14. Halimaoui, A., et al., Appl. Phys. Lett. 59. 304 (1991).Google Scholar
15. Ito, T., Kiyama, H., Watabe, H., Hiraki, A., Physica B 170, 535 (1991).CrossRefGoogle Scholar
16. Gupta, P., Colvin, V. L., George, S. M., Phys. Rev. B 37 8234 (1988).CrossRefGoogle Scholar
17. Lewis, N. S., J. Electrochem. Soc. 131, 2496 (1984).Google Scholar
18. Shriver, D. F., Drezdzon, M. A., The Manipulation of Air-Sensitive Compounds (John Wiley & Sons, New York, 1986).Google Scholar
19. Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., Keen, J. M., J. Appl. Phys. 70, 422 (1991).Google Scholar
20. Drory, M. D., Searson, P. C., Liu, L., J. Mat. Sci. Lett. 10, 81 (1991).Google Scholar
21. Chuang, S. F., Collins, S. D., Smith, R. L., Appl. Phys. Lett. 55. 1540 (1989).Google Scholar
22. Bomchil, G., Halimaoui, A., Appl. Surf. Sci. 41/42, 604 (1989).Google Scholar
23. Cullis, A. G., Canham, L. T., Nature M, 353, 335 (1991).Google Scholar