Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:22:59.983Z Has data issue: false hasContentIssue false

Low-Temperature Properties of Compensated Ge Films Used for Cryogenic Thermometers

Published online by Cambridge University Press:  01 February 2011

V. F. Mitin
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Pr. Nauki 45, 03028 Kiev, Ukraine
V. V. Kholevchuk
Affiliation:
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Pr. Nauki 45, 03028 Kiev, Ukraine
V. K. Dugaev
Affiliation:
Institute for Problems of Materials Science, Vilde 5, 58001 Chernovtsy, Ukraine Department of Electronics and Communications, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1949-014, Lisbon, Portugal
M. Vieira
Affiliation:
Department of Electronics and Communications, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1949-014, Lisbon, Portugal
Get access

Abstract

Low temperature microsensors are designed for cryogenic applications. As a material for the sensors we use heavily doped compensated Ge films deposited on the semi-insulating GaAs substrates. We present the results of experimental and theoretical study of the low temperature resistance as a function of temperature and magnetic field for some models of temperature sensors. The computer simulations show a good agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mitin, V. F., Tkhorik, Yu. A., and Venger, E. F., Microelectr. Journal 28, 617 (1997)Google Scholar
2. Mitin, V. F., Mol. Phys. Reports. 21, 71 (1998)Google Scholar
3. Mitin, V. F., Semiconductor Physics, Quant. Electron. & Optoelectronics 2, 115 (1999)Google Scholar
4. Boltovets, N. S., Kholevchuk, V. V., Konakova, R. V., Mitin, V. F., and Venger, E. F., Sensors and Actuators A92, 191 (2001)Google Scholar
5. Altshuler, B. L., Aronov, A. G., Khmelnitskii, D. E., and Larkin, A. I., Quantum Theory of Solids, ed. Lifshits, I. M. (Mir, Moscow, 1982), pp.130237.Google Scholar
6. Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985)Google Scholar
7. Altshuler, B. L. and Aronov, A. G., Electron-Electron Interaction in Disordered Systems, ed. Efros, A. L. and Pollak, M. (Elsevier, 1985), pp.1153.Google Scholar
8. Ambegaokar, V., Halperin, B. I., and Langer, J. S., Phys. Rev. B4, 2612 (1971)Google Scholar
9. Efros, A. L. and Shklovskii, B. L., J. Phys. C 8, L49 (1975).Google Scholar
10. Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V., Phys. Rev. Lett. 42, 673 (1979)Google Scholar
11. Khmelnitskii, D. E. and Larkin, A. I., Solid State Commun. 39, 1069 (1981)Google Scholar
12. Mitin, V., McFarland, J., Ihas, G. G., Dugaev, V. K.. Physica B 284-288, 1996 (2000)Google Scholar