Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:18:13.899Z Has data issue: false hasContentIssue false

Low Temperature Synthesis and Electrochemical Properties of M0.8Sr0.2Co1-xFexO3 (M = Ba, La, Pr) Nanoparticles: Effect of Grain Size on Lattice Symmetry

Published online by Cambridge University Press:  26 February 2011

Enrico Magnone
Affiliation:
magnone@crm.rcast.u-tokyo.ac.jp, University of Rome Tor Vergata, Dept. of Chemical Science and Technology, via della Ricerca Scientifica 1, Rome, I-00133, Italy, 39-06-7259-4492, 39-06-7259-4328
Masaru Miyayama
Affiliation:
miyayama@rcast.u-tokyo.ac.jp, The University of Tokyo, Research Center for Advanced Science and Technology, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan
Enrico Traversa
Affiliation:
traversa@uniroma2.it, University of Rome "Tor Vergata", Department of Chemical Science and Technology, Via della Ricerca Scientifica, Roma, 00133, Italy
Get access

Abstract

This study was performed to investigate the effect of grain size on crystallographic structure and electrochemistry properties for nanocrystalline La0.8Sr0.2Co1-xFexO3 (x = 0.1 and 0.9) powders, as a suitable model for SOFC cathodes. Different sets of perovskite-type mixed oxides were successfully prepared by the amorphous citrate method. A particle size dependent modification in the lattice parameters of La0.8Sr0.2Co1-xFexO3 nanocrystalline powders was observed. Clear correlations between crystal size, oxygen content, crystallographic structure, and electrochemical performance were observed

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maier, J., Nature 4, 805 (2005).Google Scholar
2. Multani, M. S., Guptasarma, P., Palkar, V. R., Ayyub, P. and Gurjar, A. V., Physics Letters A 142, 293 (1989).Google Scholar
3. Singhal, A., Skandan, G., Amatucci, G., Badway, F., Ye, N., Manthiram, A. ,Ye, H. and Xu, J. J., Journal of Power Sources 129, 38 (2004).Google Scholar
4. Guo, X., Computation Materials Science 20, 168 (2001).Google Scholar
5. Tschöpe, A., Sommer, E. and Birringer, R., Solid State Ionics 139, 255 (2001).Google Scholar
6. Chiang, Y.-M., Lavik, E. B., Kosacki, I., Tuller, H. L. and Ying, J. Y., Applied Physics Letters 69, 185 (1996).Google Scholar
7. Ayyub, P., Palkar, V. R., Chattopadhyay, S., and Multani, M., Physical Review B 51, 6135 (1995).Google Scholar
8. Yi, T., Gao, S., Qi, X., Zhu, Y., Cheng, F., Ma, B., Huang, Y., Liao, C. and Yan, C., Journal of Physics and Chemistry of Solids 61, 1407 (2000).Google Scholar
9. Shankar, K. S., Kar, S., Subbanna, G. N., Raychaudhuri, A. K., Solid State Communications 129, 479 (2004).Google Scholar
10. Adler, S. B., Chem. Rev. 104, 4791 (2004).Google Scholar
11. Magnone, E., Traversa, E. and Miyayama, M., Journal of the Ceramic Society of Japan (2007) (in press).Google Scholar
12. Tai, L.-W., Nasrallah, M. M., Anderson, H. U., Sparlin, D. M., Sehlin, R. R., Solid tate Ionics 76, 273 (1995).Google Scholar
13. Magnone, E., Miyayama, M. and Traversa, E., ECS Transactions 1, 7, 313 (2006).Google Scholar